Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74(1), 145-195. doi:10.1103/revmodphys.74.145
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301-1350. doi:10.1103/revmodphys.81.1301
Ekert, A., & Renner, R. (2014). The ultimate physical limits of privacy. Nature, 507(7493), 443-447. doi:10.1038/nature13132
[+]
Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74(1), 145-195. doi:10.1103/revmodphys.74.145
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301-1350. doi:10.1103/revmodphys.81.1301
Ekert, A., & Renner, R. (2014). The ultimate physical limits of privacy. Nature, 507(7493), 443-447. doi:10.1038/nature13132
Tomamichel, M., Lim, C. C. W., Gisin, N., & Renner, R. (2012). Tight finite-key analysis for quantum cryptography. Nature Communications, 3(1). doi:10.1038/ncomms1631
Lucamarini, M., Patel, K. A., Dynes, J. F., Fröhlich, B., Sharpe, A. W., Dixon, A. R., … Shields, A. J. (2013). Efficient decoy-state quantum key distribution with quantified security. Optics Express, 21(21), 24550. doi:10.1364/oe.21.024550
Yuan, Z. L., Kardynal, B. E., Sharpe, A. W., & Shields, A. J. (2007). High speed single photon detection in the near infrared. Applied Physics Letters, 91(4), 041114. doi:10.1063/1.2760135
Namekata, N., Adachi, S., & Inoue, S. (2010). Ultra-Low-Noise Sinusoidally Gated Avalanche Photodiode for High-Speed Single-Photon Detection at Telecommunication Wavelengths. IEEE Photonics Technology Letters, 22(8), 529-531. doi:10.1109/lpt.2010.2042054
Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., … Zeilinger, A. (2011). Field test of quantum key distribution in the Tokyo QKD Network. Optics Express, 19(11), 10387. doi:10.1364/oe.19.010387
Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., … Dynes, J. F. (2009). The SECOQC quantum key distribution network in Vienna. New Journal of Physics, 11(7), 075001. doi:10.1088/1367-2630/11/7/075001
Chen, T.-Y., Wang, J., Liang, H., Liu, W.-Y., Liu, Y., Jiang, X., … Pan, J.-W. (2010). Metropolitan all-pass and inter-city quantum communication network. Optics Express, 18(26), 27217. doi:10.1364/oe.18.027217
Ciurana, A., Martínez-Mateo, J., Peev, M., Poppe, A., Walenta, N., Zbinden, H., & Martín, V. (2014). Quantum metropolitan optical network based on wavelength division multiplexing. Optics Express, 22(2), 1576. doi:10.1364/oe.22.001576
Fröhlich, B., Dynes, J. F., Lucamarini, M., Sharpe, A. W., Yuan, Z., & Shields, A. J. (2013). A quantum access network. Nature, 501(7465), 69-72. doi:10.1038/nature12493
Winzer, P. J., Neilson, D. T., & Chraplyvy, A. R. (2018). Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. Optics Express, 26(18), 24190. doi:10.1364/oe.26.024190
Shariati, B., Mastropaolo, A., Diamantopoulos, N.-P., Rivas-Moscoso, J. M., Klonidis, D., & Tomkos, I. (2018). Physical-Layer-Aware Performance Evaluation of SDM Networks Based on SMF Bundles, MCFs, and FMFs. Journal of Optical Communications and Networking, 10(9), 712. doi:10.1364/jocn.10.000712
Galve, J. M., Gasulla, I., Sales, S., & Capmany, J. (2016). Reconfigurable Radio Access Networks Using Multicore Fibers. IEEE Journal of Quantum Electronics, 52(1), 1-7. doi:10.1109/jqe.2015.2497244
Dynes, J. F., Kindness, S. J., Tam, S. W.-B., Plews, A., Sharpe, A. W., Lucamarini, M., … Shields, A. J. (2016). Quantum key distribution over multicore fiber. Optics Express, 24(8), 8081. doi:10.1364/oe.24.008081
Cañas, G., Vera, N., Cariñe, J., González, P., Cardenas, J., Connolly, P. W. R., … Lima, G. (2017). High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Physical Review A, 96(2). doi:10.1103/physreva.96.022317
Lo, H.-K., Ma, X., & Chen, K. (2005). Decoy State Quantum Key Distribution. Physical Review Letters, 94(23). doi:10.1103/physrevlett.94.230504
Capmany, J. (2009). Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems. Optics Express, 17(8), 6457. doi:10.1364/oe.17.006457
Koshiba, M., Saitoh, K., Takenaga, K., & Matsuo, S. (2012). Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers. IEEE Photonics Journal, 4(5), 1987-1995. doi:10.1109/jphot.2012.2221085
Tu, J., Saitoh, K., Koshiba, M., Takenaga, K., & Matsuo, S. (2012). Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber. Optics Express, 20(14), 15157. doi:10.1364/oe.20.015157
Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., & Sasaoka, E. (2011). Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Optics Express, 19(17), 16576. doi:10.1364/oe.19.016576
Choi, I., Young, R. J., & Townsend, P. D. (2010). Quantum key distribution on a 10Gb/s WDM-PON. Optics Express, 18(9), 9600. doi:10.1364/oe.18.009600
Mora, J., Amaya, W., Ruiz-Alba, A., Martinez, A., Calvo, D., Muñoz, V. G., & Capmany, J. (2012). Simultaneous transmission of 20x2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON. Optics Express, 20(15), 16358. doi:10.1364/oe.20.016358
Mora, J., Ruiz-Alba, A., Amaya, W., Martínez, A., García-Muñoz, V., Calvo, D., & Capmany, J. (2012). Experimental demonstration of subcarrier multiplexed quantum key distribution system. Optics Letters, 37(11), 2031. doi:10.1364/ol.37.002031
Gleim, A. V., Egorov, V. I., Nazarov, Y. V., Smirnov, S. V., Chistyakov, V. V., Bannik, O. I., … Buller, G. S. (2016). Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Optics Express, 24(3), 2619. doi:10.1364/oe.24.002619
Yoshino, K., Ochi, T., Fujiwara, M., Sasaki, M., & Tajima, A. (2013). Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days. Optics Express, 21(25), 31395. doi:10.1364/oe.21.031395
[-]