Mostrar el registro sencillo del ítem
dc.contributor.author | Ureña-Gisbert, Mario | es_ES |
dc.contributor.author | Gasulla Mestre, Ivana | es_ES |
dc.contributor.author | Fraile, Francisco Javier | es_ES |
dc.contributor.author | Capmany Francoy, José | es_ES |
dc.date.accessioned | 2021-01-27T04:32:53Z | |
dc.date.available | 2021-01-27T04:32:53Z | |
dc.date.issued | 2019-03-04 | es_ES |
dc.identifier.issn | 1094-4087 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159997 | |
dc.description | © 2019 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited | es_ES |
dc.description.abstract | [EN] We report a model to use to evaluate the performance of multiple quantum key distribution (QKD) channel transmission using spatial division multiplexing (SDM) in multicore (MCF) and few-mode fibers (FMF). This model is then used to analyze the feasibility of QKD transmission in 7-core MCFs in two practical scenarios involving the (1) transmission of only QKD channels and (2) simultaneous transmission of QKD and classical channels. In the first case, standard homogeneous MCFs enable transmission distances per core compatible with transmission parameters (distance and net key rate) very close to those of single-core single-mode fibers. For the second case, heterogeneous MCFs must be employed to make this option feasible. | es_ES |
dc.description.sponsorship | European Regional Development Fund (ERDF); Galician Regional Government (project GRC2015/018 and agreement for funding AtlantTIC (Atlantic Research Center for Information and Communication Technologies)); European Research Council (ERC) (Consolidator Grant 724663); Spanish MINECO (TEC2016-80150-R project and Ramon y Cajal fellowship RYC-2014-16247 for I. Gasulla). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Modeling optical fiber space division multiplexed quantum key distribution systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.27.007047 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Xunta de Galicia//GRC2015%2F018/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/724663/EU/Revolutionizing fibre-wireless communications through space-division multiplexed photonics/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2014-16247/ES/RYC-2014-16247/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-80150-R/ES/MULTICORE FIBERS FOR NEXT-GENERATION FIBER-WIRELESS APPLICATIONS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Ureña-Gisbert, M.; Gasulla Mestre, I.; Fraile, FJ.; Capmany Francoy, J. (2019). Modeling optical fiber space division multiplexed quantum key distribution systems. Optics Express. 27(5):7047-7063. https://doi.org/10.1364/OE.27.007047 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/OE.27.007047 | es_ES |
dc.description.upvformatpinicio | 7047 | es_ES |
dc.description.upvformatpfin | 7063 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.pmid | 30876277 | es_ES |
dc.relation.pasarela | S\399276 | es_ES |
dc.contributor.funder | Xunta de Galicia | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Atlantic Research Center for Information and Communication Technologies | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74(1), 145-195. doi:10.1103/revmodphys.74.145 | es_ES |
dc.description.references | Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301-1350. doi:10.1103/revmodphys.81.1301 | es_ES |
dc.description.references | Ekert, A., & Renner, R. (2014). The ultimate physical limits of privacy. Nature, 507(7493), 443-447. doi:10.1038/nature13132 | es_ES |
dc.description.references | Tomamichel, M., Lim, C. C. W., Gisin, N., & Renner, R. (2012). Tight finite-key analysis for quantum cryptography. Nature Communications, 3(1). doi:10.1038/ncomms1631 | es_ES |
dc.description.references | Lucamarini, M., Patel, K. A., Dynes, J. F., Fröhlich, B., Sharpe, A. W., Dixon, A. R., … Shields, A. J. (2013). Efficient decoy-state quantum key distribution with quantified security. Optics Express, 21(21), 24550. doi:10.1364/oe.21.024550 | es_ES |
dc.description.references | Yuan, Z. L., Kardynal, B. E., Sharpe, A. W., & Shields, A. J. (2007). High speed single photon detection in the near infrared. Applied Physics Letters, 91(4), 041114. doi:10.1063/1.2760135 | es_ES |
dc.description.references | Namekata, N., Adachi, S., & Inoue, S. (2010). Ultra-Low-Noise Sinusoidally Gated Avalanche Photodiode for High-Speed Single-Photon Detection at Telecommunication Wavelengths. IEEE Photonics Technology Letters, 22(8), 529-531. doi:10.1109/lpt.2010.2042054 | es_ES |
dc.description.references | Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., … Zeilinger, A. (2011). Field test of quantum key distribution in the Tokyo QKD Network. Optics Express, 19(11), 10387. doi:10.1364/oe.19.010387 | es_ES |
dc.description.references | Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., … Dynes, J. F. (2009). The SECOQC quantum key distribution network in Vienna. New Journal of Physics, 11(7), 075001. doi:10.1088/1367-2630/11/7/075001 | es_ES |
dc.description.references | Chen, T.-Y., Wang, J., Liang, H., Liu, W.-Y., Liu, Y., Jiang, X., … Pan, J.-W. (2010). Metropolitan all-pass and inter-city quantum communication network. Optics Express, 18(26), 27217. doi:10.1364/oe.18.027217 | es_ES |
dc.description.references | Ciurana, A., Martínez-Mateo, J., Peev, M., Poppe, A., Walenta, N., Zbinden, H., & Martín, V. (2014). Quantum metropolitan optical network based on wavelength division multiplexing. Optics Express, 22(2), 1576. doi:10.1364/oe.22.001576 | es_ES |
dc.description.references | Fröhlich, B., Dynes, J. F., Lucamarini, M., Sharpe, A. W., Yuan, Z., & Shields, A. J. (2013). A quantum access network. Nature, 501(7465), 69-72. doi:10.1038/nature12493 | es_ES |
dc.description.references | Winzer, P. J., Neilson, D. T., & Chraplyvy, A. R. (2018). Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. Optics Express, 26(18), 24190. doi:10.1364/oe.26.024190 | es_ES |
dc.description.references | Shariati, B., Mastropaolo, A., Diamantopoulos, N.-P., Rivas-Moscoso, J. M., Klonidis, D., & Tomkos, I. (2018). Physical-Layer-Aware Performance Evaluation of SDM Networks Based on SMF Bundles, MCFs, and FMFs. Journal of Optical Communications and Networking, 10(9), 712. doi:10.1364/jocn.10.000712 | es_ES |
dc.description.references | Galve, J. M., Gasulla, I., Sales, S., & Capmany, J. (2016). Reconfigurable Radio Access Networks Using Multicore Fibers. IEEE Journal of Quantum Electronics, 52(1), 1-7. doi:10.1109/jqe.2015.2497244 | es_ES |
dc.description.references | Dynes, J. F., Kindness, S. J., Tam, S. W.-B., Plews, A., Sharpe, A. W., Lucamarini, M., … Shields, A. J. (2016). Quantum key distribution over multicore fiber. Optics Express, 24(8), 8081. doi:10.1364/oe.24.008081 | es_ES |
dc.description.references | Cañas, G., Vera, N., Cariñe, J., González, P., Cardenas, J., Connolly, P. W. R., … Lima, G. (2017). High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Physical Review A, 96(2). doi:10.1103/physreva.96.022317 | es_ES |
dc.description.references | Lo, H.-K., Ma, X., & Chen, K. (2005). Decoy State Quantum Key Distribution. Physical Review Letters, 94(23). doi:10.1103/physrevlett.94.230504 | es_ES |
dc.description.references | Capmany, J. (2009). Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems. Optics Express, 17(8), 6457. doi:10.1364/oe.17.006457 | es_ES |
dc.description.references | Koshiba, M., Saitoh, K., Takenaga, K., & Matsuo, S. (2012). Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers. IEEE Photonics Journal, 4(5), 1987-1995. doi:10.1109/jphot.2012.2221085 | es_ES |
dc.description.references | Tu, J., Saitoh, K., Koshiba, M., Takenaga, K., & Matsuo, S. (2012). Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber. Optics Express, 20(14), 15157. doi:10.1364/oe.20.015157 | es_ES |
dc.description.references | Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., & Sasaoka, E. (2011). Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Optics Express, 19(17), 16576. doi:10.1364/oe.19.016576 | es_ES |
dc.description.references | Choi, I., Young, R. J., & Townsend, P. D. (2010). Quantum key distribution on a 10Gb/s WDM-PON. Optics Express, 18(9), 9600. doi:10.1364/oe.18.009600 | es_ES |
dc.description.references | Mora, J., Amaya, W., Ruiz-Alba, A., Martinez, A., Calvo, D., Muñoz, V. G., & Capmany, J. (2012). Simultaneous transmission of 20x2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON. Optics Express, 20(15), 16358. doi:10.1364/oe.20.016358 | es_ES |
dc.description.references | Mora, J., Ruiz-Alba, A., Amaya, W., Martínez, A., García-Muñoz, V., Calvo, D., & Capmany, J. (2012). Experimental demonstration of subcarrier multiplexed quantum key distribution system. Optics Letters, 37(11), 2031. doi:10.1364/ol.37.002031 | es_ES |
dc.description.references | Gleim, A. V., Egorov, V. I., Nazarov, Y. V., Smirnov, S. V., Chistyakov, V. V., Bannik, O. I., … Buller, G. S. (2016). Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Optics Express, 24(3), 2619. doi:10.1364/oe.24.002619 | es_ES |
dc.description.references | Yoshino, K., Ochi, T., Fujiwara, M., Sasaki, M., & Tajima, A. (2013). Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days. Optics Express, 21(25), 31395. doi:10.1364/oe.21.031395 | es_ES |