- -

Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peng, Yong es_ES
dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author Alvarez, Eleuterio es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-01-27T04:32:55Z
dc.date.available 2021-01-27T04:32:55Z
dc.date.issued 2019-09-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159998
dc.description.abstract [EN] A hybrid benzidinium lead iodide perovskite (formula: PbI(3)benzidinium(0.5)) (3) with a 1D structure has been synthesized and characterized. The hybrid perovskite exhibits visible light (lambda > 450 nm) photocatalytic activity to promote the photoinduced electron transfer cis-to-trans isomerization of stilbene. The solid photocatalyst undergoes changes in the particle morphology, but maintains the crystallinity. es_ES
dc.description.sponsorship Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, and CTQ2015-69563-CO2-R1) and the Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. Yong Peng also thanks the Universitat Politecnica de Valencia for a predoctoral scholarship. es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation MINECO/CTQ2015-69563-CO2-R1 es_ES
dc.relation.ispartof Sustainable Energy & Fuels es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9se00182d es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Peng, Y.; Albero-Sancho, J.; Alvarez, E.; García Gómez, H. (2019). Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts. Sustainable Energy & Fuels. 3(9):2356-2360. https://doi.org/10.1039/c9se00182d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9se00182d es_ES
dc.description.upvformatpinicio 2356 es_ES
dc.description.upvformatpfin 2360 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2398-4902 es_ES
dc.relation.pasarela S\407064 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598r es_ES
dc.description.references Ponseca, C. S., Savenije, T. J., Abdellah, M., Zheng, K., Yartsev, A., Pascher, T., … Sundström, V. (2014). Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination. Journal of the American Chemical Society, 136(14), 5189-5192. doi:10.1021/ja412583t es_ES
dc.description.references Saliba, M., Orlandi, S., Matsui, T., Aghazada, S., Cavazzini, M., Correa-Baena, J.-P., … Nazeeruddin, M. K. (2016). A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy, 1(2). doi:10.1038/nenergy.2015.17 es_ES
dc.description.references Zhao, D., Wang, C., Song, Z., Yu, Y., Chen, C., Zhao, X., … Yan, Y. (2018). Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%. ACS Energy Letters, 3(2), 305-306. doi:10.1021/acsenergylett.7b01287 es_ES
dc.description.references Park, S., Chang, W. J., Lee, C. W., Park, S., Ahn, H.-Y., & Nam, K. T. (2016). Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nature Energy, 2(1). doi:10.1038/nenergy.2016.185 es_ES
dc.description.references Zhu, X., Lin, Y., Sun, Y., Beard, M. C., & Yan, Y. (2019). Lead-Halide Perovskites for Photocatalytic α-Alkylation of Aldehydes. Journal of the American Chemical Society, 141(2), 733-738. doi:10.1021/jacs.8b08720 es_ES
dc.description.references Febriansyah, B., Koh, T. M., John, R. A., Ganguly, R., Li, Y., Bruno, A., … England, J. (2018). Inducing Panchromatic Absorption and Photoconductivity in Polycrystalline Molecular 1D Lead-Iodide Perovskites through π-Stacked Viologens. Chemistry of Materials, 30(17), 5827-5830. doi:10.1021/acs.chemmater.8b02038 es_ES
dc.description.references Hu, H., Meier, F., Zhao, D., Abe, Y., Gao, Y., Chen, B., … Lam, Y. M. (2018). Efficient Room-Temperature Phosphorescence from Organic-Inorganic Hybrid Perovskites by Molecular Engineering. Advanced Materials, 30(36), 1707621. doi:10.1002/adma.201707621 es_ES
dc.description.references Merkel, P. B., Luo, P., Dinnocenzo, J. P., & Farid, S. (2009). Accurate Oxidation Potentials of Benzene and Biphenyl Derivatives via Electron-Transfer Equilibria and Transient Kinetics. The Journal of Organic Chemistry, 74(15), 5163-5173. doi:10.1021/jo9011267 es_ES
dc.description.references Meggers, E., Steckhan, E., & Blechert, S. (1995). Radical CC Bond Formation by Photoinduced Electron Transfer Addition ofα-Silyl Carbamates to Acceptor-Substituted Alkenes. Angewandte Chemie International Edition in English, 34(19), 2137-2139. doi:10.1002/anie.199521371 es_ES
dc.description.references Heacock, R. A., & Marion, L. (1956). THE INFRARED SPECTRA OF SECONDARY AMINES AND THEIR SALTS. Canadian Journal of Chemistry, 34(12), 1782-1795. doi:10.1139/v56-231 es_ES
dc.description.references Albero, J., Asiri, A. M., & García, H. (2016). Influence of the composition of hybrid perovskites on their performance in solar cells. Journal of Materials Chemistry A, 4(12), 4353-4364. doi:10.1039/c6ta00334f es_ES
dc.description.references Gao, P., Bin Mohd Yusoff, A. R., & Nazeeruddin, M. K. (2018). Dimensionality engineering of hybrid halide perovskite light absorbers. Nature Communications, 9(1). doi:10.1038/s41467-018-07382-9 es_ES
dc.description.references Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T., & Kanatzidis, M. G. (2015). 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. Journal of the American Chemical Society, 137(24), 7843-7850. doi:10.1021/jacs.5b03796 es_ES
dc.description.references Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., … Hayase, S. (2014). CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters, 5(6), 1004-1011. doi:10.1021/jz5002117 es_ES
dc.description.references Safdari, M., Svensson, P. H., Hoang, M. T., Oh, I., Kloo, L., & Gardner, J. M. (2016). Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells. Journal of Materials Chemistry A, 4(40), 15638-15646. doi:10.1039/c6ta05055g es_ES
dc.description.references Lorenzon, M., Sortino, L., Akkerman, Q., Accornero, S., Pedrini, J., Prato, M., … Brovelli, S. (2017). Role of Nonradiative Defects and Environmental Oxygen on Exciton Recombination Processes in CsPbBr3 Perovskite Nanocrystals. Nano Letters, 17(6), 3844-3853. doi:10.1021/acs.nanolett.7b01253 es_ES
dc.description.references Corma, A., Fornes, V., Garcia, H., Miranda, M. A., Primo, J., & Sabater, M.-J. (1994). Photoinduced Electron Transfer within Zeolite Cavities: cis-Stilbene Isomerization Photosensitized by 2,4,6-Triphenylpyrylium Cation Imprisoned inside Zeolite Y. Journal of the American Chemical Society, 116(6), 2276-2280. doi:10.1021/ja00085a006 es_ES
dc.description.references Waldeck, D. H. (1991). Photoisomerization dynamics of stilbenes. Chemical Reviews, 91(3), 415-436. doi:10.1021/cr00003a007 es_ES
dc.description.references Saltiel, J., Ganapathy, S., & Werking, C. (1987). The .DELTA.H for thermal trans/cis-stilbene isomerization: do S0 and T1 potential energy curves cross? The Journal of Physical Chemistry, 91(11), 2755-2758. doi:10.1021/j100295a022 es_ES
dc.description.references De Wergifosse, M., Houk, A. L., Krylov, A. I., & Elles, C. G. (2017). Two-photon absorption spectroscopy of trans-stilbene, cis-stilbene, and phenanthrene: Theory and experiment. The Journal of Chemical Physics, 146(14), 144305. doi:10.1063/1.4979651 es_ES
dc.description.references Alvaro, M., Aprile, C., Ferrer, B., & Garcia, H. (2007). Functional Molecules from Single Wall Carbon Nanotubes. Photoinduced Solubility of Short Single Wall Carbon Nanotube Residues by Covalent Anchoring of 2,4,6-Triarylpyrylium Units. Journal of the American Chemical Society, 129(17), 5647-5655. doi:10.1021/ja0690520 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem