- -

The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination

Mostrar el registro completo del ítem

Lozano Juste, J.; Masi, M.; Cimmino, A.; Clement, S.; Fernández López, MA.; Antoni, R.; Meyer, S.... (2019). The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination. Journal of Experimental Botany. 70(19):5487-5494. https://doi.org/10.1093/jxb/erz306

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160007

Ficheros en el ítem

Metadatos del ítem

Título: The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination
Autor: LOZANO JUSTE, JORGE Masi, Marco Cimmino, Alessio Clement, Suzette FERNÁNDEZ LÓPEZ, MARIA ANGELES Antoni, Regina Meyer, Susan Rodríguez Egea, Pedro Luís Evidente, Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Pyrenophoric acid (P-Acid), P-Acid B, and P-Acid C are three phytotoxic sesquiterpenoids produced by the ascomycete seed pathogen Pyrenophora semeniperda, a fungus proposed as a mycoherbicide for biocontrol of cheatgrass, ...[+]
Palabras clave: ABA2 , ABA biosynthesis , Abscisic acid , Cross-kingdom activity , Pyrenophora semeniperda , Pyrenophoric acid , Pyrenophoric acid B , Pyrenophoric acid C , PYR/PYL , Seed germination
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Journal of Experimental Botany. (issn: 0022-0957 )
DOI: 10.1093/jxb/erz306
Editorial:
Oxford University Press
Versión del editor: https://doi.org/10.1093/jxb/erz306
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/707477/EU/Drought discovery to improve drought tolerance in crops/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82503-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA Y TOLERANCIA A SEQUIA MEDIANTE E3 UBIQUITIN LIGASAS QUE REGULAN EL RECAMBIO DE RECEPTORES Y FOSFATASAS 2C/
info:eu-repo/grantAgreement/AEI//RTC-2017-6019-2/ES/Descubrimiento de agroquímicos para mejorar la resistencia a la sequía de plantas de cosecha/
info:eu-repo/grantAgreement/USDA//JFSP-11-S-206/
Agradecimientos:
This research was funded in part by Grant JFSP-11-S-206 to SM from the Joint Fire Sciences Program of the US Departments of Agriculture and Interior and, in part, to MM, by Programme STAR 2017 financially supported by UniNA ...[+]
Tipo: Artículo

References

Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Rodrigues, A., Pizzio, G. A., & Rodriguez, P. L. (2011). Selective Inhibition of Clade A Phosphatases Type 2C by PYR/PYL/RCAR Abscisic Acid Receptors    . Plant Physiology, 158(2), 970-980. doi:10.1104/pp.111.188623

Audran, C., Borel, C., Frey, A., Sotta, B., Meyer, C., Simonneau, T., & Marion-Poll, A. (1998). Expression Studies of the Zeaxanthin Epoxidase Gene inNicotiana plumbaginifolia  . Plant Physiology, 118(3), 1021-1028. doi:10.1104/pp.118.3.1021

Beckstead, J., Meyer, S. E., Ishizuka, T. S., McEvoy, K. M., & Coleman, C. E. (2016). Lack of Host Specialization on Winter Annual Grasses in the Fungal Seed Bank Pathogen Pyrenophora semeniperda. PLOS ONE, 11(3), e0151058. doi:10.1371/journal.pone.0151058 [+]
Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Rodrigues, A., Pizzio, G. A., & Rodriguez, P. L. (2011). Selective Inhibition of Clade A Phosphatases Type 2C by PYR/PYL/RCAR Abscisic Acid Receptors    . Plant Physiology, 158(2), 970-980. doi:10.1104/pp.111.188623

Audran, C., Borel, C., Frey, A., Sotta, B., Meyer, C., Simonneau, T., & Marion-Poll, A. (1998). Expression Studies of the Zeaxanthin Epoxidase Gene inNicotiana plumbaginifolia  . Plant Physiology, 118(3), 1021-1028. doi:10.1104/pp.118.3.1021

Beckstead, J., Meyer, S. E., Ishizuka, T. S., McEvoy, K. M., & Coleman, C. E. (2016). Lack of Host Specialization on Winter Annual Grasses in the Fungal Seed Bank Pathogen Pyrenophora semeniperda. PLOS ONE, 11(3), e0151058. doi:10.1371/journal.pone.0151058

Beckstead, J., Meyer, S. E., Molder, C. J., & Smith, C. (2007). A Race for Survival: Can Bromus tectorum Seeds Escape Pyrenophora semeniperda-caused Mortality by Germinating Quickly? Annals of Botany, 99(5), 907-914. doi:10.1093/aob/mcm028

Benson, C. L., Kepka, M., Wunschel, C., Rajagopalan, N., Nelson, K. M., Christmann, A., … Loewen, M. C. (2015). Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana. Phytochemistry, 113, 96-107. doi:10.1016/j.phytochem.2014.03.017

Cheng, W.-H., Endo, A., Zhou, L., Penney, J., Chen, H.-C., Arroyo, A., … Sheen, J. (2002). A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions. The Plant Cell, 14(11), 2723-2743. doi:10.1105/tpc.006494

Cimmino, A., Masi, M., Evidente, M., Superchi, S., & Evidente, A. (2015). Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Natural Product Reports, 32(12), 1629-1653. doi:10.1039/c5np00081e

Dupeux, F., Antoni, R., Betz, K., Santiago, J., Gonzalez-Guzman, M., Rodriguez, L., … Márquez, J. A. (2011). Modulation of Abscisic Acid Signaling in Vivo by an Engineered Receptor-Insensitive Protein Phosphatase Type 2C Allele    . Plant Physiology, 156(1), 106-116. doi:10.1104/pp.110.170894

Finch-Boekweg, H., Gardner, J. S., Allen, P. S., & Geary, B. (2016). Postdispersal Infection and Disease Development of Pyrenophora semeniperda in Bromus tectorum Seeds. Phytopathology®, 106(3), 236-243. doi:10.1094/phyto-09-15-0229-r

Frey, A., Effroy, D., Lefebvre, V., Seo, M., Perreau, F., Berger, A., … Marion-Poll, A. (2012). Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. The Plant Journal, 70(3), 501-512. doi:10.1111/j.1365-313x.2011.04887.x

Germino, M. J., Chambers, J. C., & Brown, C. S. (Eds.). (2016). Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US. Springer Series on Environmental Management. doi:10.1007/978-3-319-24930-8

González-Guzmán, M., Abia, D., Salinas, J., Serrano, R., & Rodríguez, P. L. (2004). Two New Alleles of the abscisic aldehyde oxidase 3 Gene Reveal Its Role in Abscisic Acid Biosynthesis in Seeds. Plant Physiology, 135(1), 325-333. doi:10.1104/pp.103.036590

González-Guzmán, M., Apostolova, N., Bellés, J. M., Barrero, J. M., Piqueras, P., Ponce, M. R., … Rodríguez, P. L. (2002). The Short-Chain Alcohol Dehydrogenase ABA2 Catalyzes the Conversion of Xanthoxin to Abscisic Aldehyde[W]. The Plant Cell, 14(8), 1833-1846. doi:10.1105/tpc.002477

Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W., … Rodriguez, P. L. (2012). Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid. The Plant Cell, 24(6), 2483-2496. doi:10.1105/tpc.112.098574

Hartung, W. (2010). The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Functional Plant Biology, 37(9), 806. doi:10.1071/fp10058

He, Y., Hao, Q., Li, W., Yan, C., Yan, N., & Yin, P. (2014). Identification and Characterization of ABA Receptors in Oryza sativa. PLoS ONE, 9(4), e95246. doi:10.1371/journal.pone.0095246

Iuchi, S., Kobayashi, M., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2000). A Stress-Inducible Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Abscisic Acid Biosynthesis under Water Stress in Drought-Tolerant Cowpea. Plant Physiology, 123(2), 553-562. doi:10.1104/pp.123.2.553

Kepka, M., Benson, C. L., Gonugunta, V. K., Nelson, K. M., Christmann, A., Grill, E., & Abrams, S. R. (2011). Action of Natural Abscisic Acid Precursors and Catabolites on Abscisic Acid Receptor Complexes  . Plant Physiology, 157(4), 2108-2119. doi:10.1104/pp.111.182584

Leon-Kloosterziel, K. M., Gil, M. A., Ruijs, G. J., Jacobsen, S. E., Olszewski, N. E., Schwartz, S. H., … Koornneef, M. (1996). Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. The Plant Journal, 10(4), 655-661. doi:10.1046/j.1365-313x.1996.10040655.x

Leung, J., & Giraudat, J. (1998). ABSCISIC ACID SIGNAL TRANSDUCTION. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 199-222. doi:10.1146/annurev.arplant.49.1.199

Lozano-Juste, J., & Cutler, S. R. (2016). Hormone signalling: ABA has a breakdown. Nature Plants, 2(9). doi:10.1038/nplants.2016.137

Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., … Marion-Poll, A. (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. The EMBO Journal, 15(10), 2331-2342. doi:10.1002/j.1460-2075.1996.tb00589.x

Masi, M., Evidente, A., Meyer, S., Nicholson, J., & Muñoz, A. (2013). Effect of strain and cultural conditions on the production of cytochalasin B by the potential mycoherbicidePyrenophora semeniperda(Pleosporaceae, Pleosporales). Biocontrol Science and Technology, 24(1), 53-64. doi:10.1080/09583157.2013.844769

Masi, M., Meyer, S., Cimmino, A., Andolfi, A., & Evidente, A. (2014). Pyrenophoric Acid, a Phytotoxic Sesquiterpenoid Penta-2,4-dienoic Acid Produced by a Potential Mycoherbicide, Pyrenophora semeniperda. Journal of Natural Products, 77(4), 925-930. doi:10.1021/np4009915

Masi, M., Meyer, S., Cimmino, A., Clement, S., Black, B., & Evidente, A. (2014). Pyrenophoric Acids B and C, Two New Phytotoxic Sesquiterpenoids Produced by Pyrenophora semeniperda. Journal of Agricultural and Food Chemistry, 62(42), 10304-10311. doi:10.1021/jf5035515

Masi, M., Meyer, S., Clement, S., Andolfi, A., Cimmino, A., & Evidente, A. (2014). Spirostaphylotrichin W, a spirocyclic γ-lactam isolated from liquid culture of Pyrenophora semeniperda, a potential mycoherbicide for cheatgrass (Bromus tectorum) biocontrol. Tetrahedron, 70(7), 1497-1501. doi:10.1016/j.tet.2013.12.056

Melcher, K., Ng, L.-M., Zhou, X. E., Soon, F.-F., Xu, Y., Suino-Powell, K. M., … Xu, H. E. (2009). A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature, 462(7273), 602-608. doi:10.1038/nature08613

Meyer, S. E., Masi, M., Clement, S., Davis, T. L., & Beckstead, J. (2015). Mycelial growth rate and toxin production in the seed pathogenPyrenophora semeniperda: resource trade-offs and temporally varying selection. Plant Pathology, 64(6), 1450-1460. doi:10.1111/ppa.12377

Murase, K., Hirano, Y., Sun, T., & Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 456(7221), 459-463. doi:10.1038/nature07519

Nambara, E., & Marion-Poll, A. (2005). ABSCISIC ACID BIOSYNTHESIS AND CATABOLISM. Annual Review of Plant Biology, 56(1), 165-185. doi:10.1146/annurev.arplant.56.032604.144046

Okamoto, M., Peterson, F. C., Defries, A., Park, S.-Y., Endo, A., Nambara, E., … Cutler, S. R. (2013). Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proceedings of the National Academy of Sciences, 110(29), 12132-12137. doi:10.1073/pnas.1305919110

Pri-Tal, O., Shaar-Moshe, L., Wiseglass, G., Peleg, Z., & Mosquna, A. (2017). Non-redundant functions of the dimeric ABA receptor BdPYL1 in the grass Brachypodium. The Plant Journal, 92(5), 774-786. doi:10.1111/tpj.13714

Rodriguez, P. L. (2016). Abscisic Acid Catabolism Generates Phaseic Acid, a Molecule Able to Activate a Subset of ABA Receptors. Molecular Plant, 9(11), 1448-1450. doi:10.1016/j.molp.2016.09.009

Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.-Y., Jamin, M., … Márquez, J. A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 462(7273), 665-668. doi:10.1038/nature08591

Scherlach, K., Boettger, D., Remme, N., & Hertweck, C. (2010). The chemistry and biology of cytochalasans. Natural Product Reports, 27(6), 869. doi:10.1039/b903913a

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019

Schwartz, S. H., Tan, B. C., Gage, D. A., Zeevaart, J. A. D., & McCarty, D. R. (1997). Specific Oxidative Cleavage of Carotenoids by VP14 of Maize. Science, 276(5320), 1872-1874. doi:10.1126/science.276.5320.1872

Seo, M., Peeters, A. J. M., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J. A. D., … Koshiba, T. (2000). The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceedings of the National Academy of Sciences, 97(23), 12908-12913. doi:10.1073/pnas.220426197

Sheard, L. B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T. R., … Zheng, N. (2010). Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature, 468(7322), 400-405. doi:10.1038/nature09430

Shimada, A., Ueguchi-Tanaka, M., Nakatsu, T., Nakajima, M., Naoe, Y., Ohmiya, H., … Matsuoka, M. (2008). Structural basis for gibberellin recognition by its receptor GID1. Nature, 456(7221), 520-523. doi:10.1038/nature07546

Takezawa, D., Komatsu, K., & Sakata, Y. (2011). ABA in bryophytes: how a universal growth regulator in life became a plant hormone? Journal of Plant Research, 124(4), 437-453. doi:10.1007/s10265-011-0410-5

Vaidya, A. S., Peterson, F. C., Yarmolinsky, D., Merilo, E., Verstraeten, I., Park, S.-Y., … Cutler, S. R. (2017). A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration. ACS Chemical Biology, 12(11), 2842-2848. doi:10.1021/acschembio.7b00650

Villa, R., & Molinari, F. (2008). Reduction of Carbonylic and Carboxylic Groups by Plant Cell Cultures. Journal of Natural Products, 71(4), 693-696. doi:10.1021/np070386s

Weng, J.-K., Ye, M., Li, B., & Noel, J. P. (2016). Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity. Cell, 166(4), 881-893. doi:10.1016/j.cell.2016.06.027

Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES. Annual Review of Plant Biology, 57(1), 781-803. doi:10.1146/annurev.arplant.57.032905.105444

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem