Mostrar el registro sencillo del ítem
dc.contributor.author | LOZANO JUSTE, JORGE | es_ES |
dc.contributor.author | Masi, Marco | es_ES |
dc.contributor.author | Cimmino, Alessio | es_ES |
dc.contributor.author | Clement, Suzette | es_ES |
dc.contributor.author | FERNÁNDEZ LÓPEZ, MARIA ANGELES | es_ES |
dc.contributor.author | Antoni, Regina | es_ES |
dc.contributor.author | Meyer, Susan | es_ES |
dc.contributor.author | Rodríguez Egea, Pedro Luís | es_ES |
dc.contributor.author | Evidente, Antonio | es_ES |
dc.date.accessioned | 2021-01-27T04:33:14Z | |
dc.date.available | 2021-01-27T04:33:14Z | |
dc.date.issued | 2019-10-01 | es_ES |
dc.identifier.issn | 0022-0957 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160007 | |
dc.description.abstract | [EN] Pyrenophoric acid (P-Acid), P-Acid B, and P-Acid C are three phytotoxic sesquiterpenoids produced by the ascomycete seed pathogen Pyrenophora semeniperda, a fungus proposed as a mycoherbicide for biocontrol of cheatgrass, an extremely invasive weed. When tested in cheatgrass bioassays, these metabolites were able to delay seed germination, with P-Acid B being the most active compound. Here, we have investigated the cross-kingdom activity of P-Acid B and its mode of action, and found that it activates the abscisic acid (ABA) signaling pathway in order to inhibit seedling establishment. P-Acid B inhibits seedling establishment in wild-type Arabidopsis thaliana, while several mutants affected in the early perception as well as in downstream ABA signaling components were insensitive to the fungal compound. However, in spite of structural similarities between ABA and P-Acid B, the latter is not able to activate the PYR/PYL family of ABA receptors. Instead, we have found that P-Acid B uses the ABA biosynthesis pathway at the level of alcohol dehydrogenase ABA2 to reduce seedling establishment. We propose that the fungus P. semeniperda manipulates plant ABA biosynthesis as a strategy to reduce seed germination, increasing its ability to cause seed mortality and thereby increase its fitness through higher reproductive success. | es_ES |
dc.description.sponsorship | This research was funded in part by Grant JFSP-11-S-206 to SM from the Joint Fire Sciences Program of the US Departments of Agriculture and Interior and, in part, to MM, by Programme STAR 2017 financially supported by UniNA and Compagnia di San Paolo. JL-J is funded by a Marie-Sklodowska Curie Reintegration Grant H2020-MSCA-707477. Work in the PLR lab is supported by RTC-2017-6019-2 and BIO201782503-R grants from Ministerio de Ciencia, Innovacion y Universidades. MAF is a recipient of a FPU fellowship from MECD. AE is associated to the Istituto di Chimica Biomolecolare del CNR, Pozzuoli, Italy. We would like to thank Ebe Merilo (University of Tartu) for sharing nced3,5 and aba3-1 mutant seeds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Journal of Experimental Botany | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | ABA2 | es_ES |
dc.subject | ABA biosynthesis | es_ES |
dc.subject | Abscisic acid | es_ES |
dc.subject | Cross-kingdom activity | es_ES |
dc.subject | Pyrenophora semeniperda | es_ES |
dc.subject | Pyrenophoric acid | es_ES |
dc.subject | Pyrenophoric acid B | es_ES |
dc.subject | Pyrenophoric acid C | es_ES |
dc.subject | PYR/PYL | es_ES |
dc.subject | Seed germination | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/jxb/erz306 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/707477/EU/Drought discovery to improve drought tolerance in crops/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82503-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA Y TOLERANCIA A SEQUIA MEDIANTE E3 UBIQUITIN LIGASAS QUE REGULAN EL RECAMBIO DE RECEPTORES Y FOSFATASAS 2C/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTC-2017-6019-2/ES/Descubrimiento de agroquímicos para mejorar la resistencia a la sequía de plantas de cosecha/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/USDA//JFSP-11-S-206/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Lozano Juste, J.; Masi, M.; Cimmino, A.; Clement, S.; Fernández López, MA.; Antoni, R.; Meyer, S.... (2019). The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination. Journal of Experimental Botany. 70(19):5487-5494. https://doi.org/10.1093/jxb/erz306 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/jxb/erz306 | es_ES |
dc.description.upvformatpinicio | 5487 | es_ES |
dc.description.upvformatpfin | 5494 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 70 | es_ES |
dc.description.issue | 19 | es_ES |
dc.identifier.pmid | 31257433 | es_ES |
dc.identifier.pmcid | PMC6793445 | es_ES |
dc.relation.pasarela | S\403512 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Compagnia di San Paolo | es_ES |
dc.contributor.funder | U.S. Department of Agriculture | es_ES |
dc.contributor.funder | U.S. Department of the Interior | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Università degli Studi di Napoli Federico II | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Rodrigues, A., Pizzio, G. A., & Rodriguez, P. L. (2011). Selective Inhibition of Clade A Phosphatases Type 2C by PYR/PYL/RCAR Abscisic Acid Receptors . Plant Physiology, 158(2), 970-980. doi:10.1104/pp.111.188623 | es_ES |
dc.description.references | Audran, C., Borel, C., Frey, A., Sotta, B., Meyer, C., Simonneau, T., & Marion-Poll, A. (1998). Expression Studies of the Zeaxanthin Epoxidase Gene inNicotiana plumbaginifolia . Plant Physiology, 118(3), 1021-1028. doi:10.1104/pp.118.3.1021 | es_ES |
dc.description.references | Beckstead, J., Meyer, S. E., Ishizuka, T. S., McEvoy, K. M., & Coleman, C. E. (2016). Lack of Host Specialization on Winter Annual Grasses in the Fungal Seed Bank Pathogen Pyrenophora semeniperda. PLOS ONE, 11(3), e0151058. doi:10.1371/journal.pone.0151058 | es_ES |
dc.description.references | Beckstead, J., Meyer, S. E., Molder, C. J., & Smith, C. (2007). A Race for Survival: Can Bromus tectorum Seeds Escape Pyrenophora semeniperda-caused Mortality by Germinating Quickly? Annals of Botany, 99(5), 907-914. doi:10.1093/aob/mcm028 | es_ES |
dc.description.references | Benson, C. L., Kepka, M., Wunschel, C., Rajagopalan, N., Nelson, K. M., Christmann, A., … Loewen, M. C. (2015). Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana. Phytochemistry, 113, 96-107. doi:10.1016/j.phytochem.2014.03.017 | es_ES |
dc.description.references | Cheng, W.-H., Endo, A., Zhou, L., Penney, J., Chen, H.-C., Arroyo, A., … Sheen, J. (2002). A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions. The Plant Cell, 14(11), 2723-2743. doi:10.1105/tpc.006494 | es_ES |
dc.description.references | Cimmino, A., Masi, M., Evidente, M., Superchi, S., & Evidente, A. (2015). Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Natural Product Reports, 32(12), 1629-1653. doi:10.1039/c5np00081e | es_ES |
dc.description.references | Dupeux, F., Antoni, R., Betz, K., Santiago, J., Gonzalez-Guzman, M., Rodriguez, L., … Márquez, J. A. (2011). Modulation of Abscisic Acid Signaling in Vivo by an Engineered Receptor-Insensitive Protein Phosphatase Type 2C Allele . Plant Physiology, 156(1), 106-116. doi:10.1104/pp.110.170894 | es_ES |
dc.description.references | Finch-Boekweg, H., Gardner, J. S., Allen, P. S., & Geary, B. (2016). Postdispersal Infection and Disease Development of Pyrenophora semeniperda in Bromus tectorum Seeds. Phytopathology®, 106(3), 236-243. doi:10.1094/phyto-09-15-0229-r | es_ES |
dc.description.references | Frey, A., Effroy, D., Lefebvre, V., Seo, M., Perreau, F., Berger, A., … Marion-Poll, A. (2012). Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. The Plant Journal, 70(3), 501-512. doi:10.1111/j.1365-313x.2011.04887.x | es_ES |
dc.description.references | Germino, M. J., Chambers, J. C., & Brown, C. S. (Eds.). (2016). Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US. Springer Series on Environmental Management. doi:10.1007/978-3-319-24930-8 | es_ES |
dc.description.references | González-Guzmán, M., Abia, D., Salinas, J., Serrano, R., & Rodríguez, P. L. (2004). Two New Alleles of the abscisic aldehyde oxidase 3 Gene Reveal Its Role in Abscisic Acid Biosynthesis in Seeds. Plant Physiology, 135(1), 325-333. doi:10.1104/pp.103.036590 | es_ES |
dc.description.references | González-Guzmán, M., Apostolova, N., Bellés, J. M., Barrero, J. M., Piqueras, P., Ponce, M. R., … Rodríguez, P. L. (2002). The Short-Chain Alcohol Dehydrogenase ABA2 Catalyzes the Conversion of Xanthoxin to Abscisic Aldehyde[W]. The Plant Cell, 14(8), 1833-1846. doi:10.1105/tpc.002477 | es_ES |
dc.description.references | Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W., … Rodriguez, P. L. (2012). Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid. The Plant Cell, 24(6), 2483-2496. doi:10.1105/tpc.112.098574 | es_ES |
dc.description.references | Hartung, W. (2010). The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Functional Plant Biology, 37(9), 806. doi:10.1071/fp10058 | es_ES |
dc.description.references | He, Y., Hao, Q., Li, W., Yan, C., Yan, N., & Yin, P. (2014). Identification and Characterization of ABA Receptors in Oryza sativa. PLoS ONE, 9(4), e95246. doi:10.1371/journal.pone.0095246 | es_ES |
dc.description.references | Iuchi, S., Kobayashi, M., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2000). A Stress-Inducible Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Abscisic Acid Biosynthesis under Water Stress in Drought-Tolerant Cowpea. Plant Physiology, 123(2), 553-562. doi:10.1104/pp.123.2.553 | es_ES |
dc.description.references | Kepka, M., Benson, C. L., Gonugunta, V. K., Nelson, K. M., Christmann, A., Grill, E., & Abrams, S. R. (2011). Action of Natural Abscisic Acid Precursors and Catabolites on Abscisic Acid Receptor Complexes . Plant Physiology, 157(4), 2108-2119. doi:10.1104/pp.111.182584 | es_ES |
dc.description.references | Leon-Kloosterziel, K. M., Gil, M. A., Ruijs, G. J., Jacobsen, S. E., Olszewski, N. E., Schwartz, S. H., … Koornneef, M. (1996). Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. The Plant Journal, 10(4), 655-661. doi:10.1046/j.1365-313x.1996.10040655.x | es_ES |
dc.description.references | Leung, J., & Giraudat, J. (1998). ABSCISIC ACID SIGNAL TRANSDUCTION. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 199-222. doi:10.1146/annurev.arplant.49.1.199 | es_ES |
dc.description.references | Lozano-Juste, J., & Cutler, S. R. (2016). Hormone signalling: ABA has a breakdown. Nature Plants, 2(9). doi:10.1038/nplants.2016.137 | es_ES |
dc.description.references | Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., … Marion-Poll, A. (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. The EMBO Journal, 15(10), 2331-2342. doi:10.1002/j.1460-2075.1996.tb00589.x | es_ES |
dc.description.references | Masi, M., Evidente, A., Meyer, S., Nicholson, J., & Muñoz, A. (2013). Effect of strain and cultural conditions on the production of cytochalasin B by the potential mycoherbicidePyrenophora semeniperda(Pleosporaceae, Pleosporales). Biocontrol Science and Technology, 24(1), 53-64. doi:10.1080/09583157.2013.844769 | es_ES |
dc.description.references | Masi, M., Meyer, S., Cimmino, A., Andolfi, A., & Evidente, A. (2014). Pyrenophoric Acid, a Phytotoxic Sesquiterpenoid Penta-2,4-dienoic Acid Produced by a Potential Mycoherbicide, Pyrenophora semeniperda. Journal of Natural Products, 77(4), 925-930. doi:10.1021/np4009915 | es_ES |
dc.description.references | Masi, M., Meyer, S., Cimmino, A., Clement, S., Black, B., & Evidente, A. (2014). Pyrenophoric Acids B and C, Two New Phytotoxic Sesquiterpenoids Produced by Pyrenophora semeniperda. Journal of Agricultural and Food Chemistry, 62(42), 10304-10311. doi:10.1021/jf5035515 | es_ES |
dc.description.references | Masi, M., Meyer, S., Clement, S., Andolfi, A., Cimmino, A., & Evidente, A. (2014). Spirostaphylotrichin W, a spirocyclic γ-lactam isolated from liquid culture of Pyrenophora semeniperda, a potential mycoherbicide for cheatgrass (Bromus tectorum) biocontrol. Tetrahedron, 70(7), 1497-1501. doi:10.1016/j.tet.2013.12.056 | es_ES |
dc.description.references | Melcher, K., Ng, L.-M., Zhou, X. E., Soon, F.-F., Xu, Y., Suino-Powell, K. M., … Xu, H. E. (2009). A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature, 462(7273), 602-608. doi:10.1038/nature08613 | es_ES |
dc.description.references | Meyer, S. E., Masi, M., Clement, S., Davis, T. L., & Beckstead, J. (2015). Mycelial growth rate and toxin production in the seed pathogenPyrenophora semeniperda: resource trade-offs and temporally varying selection. Plant Pathology, 64(6), 1450-1460. doi:10.1111/ppa.12377 | es_ES |
dc.description.references | Murase, K., Hirano, Y., Sun, T., & Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 456(7221), 459-463. doi:10.1038/nature07519 | es_ES |
dc.description.references | Nambara, E., & Marion-Poll, A. (2005). ABSCISIC ACID BIOSYNTHESIS AND CATABOLISM. Annual Review of Plant Biology, 56(1), 165-185. doi:10.1146/annurev.arplant.56.032604.144046 | es_ES |
dc.description.references | Okamoto, M., Peterson, F. C., Defries, A., Park, S.-Y., Endo, A., Nambara, E., … Cutler, S. R. (2013). Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proceedings of the National Academy of Sciences, 110(29), 12132-12137. doi:10.1073/pnas.1305919110 | es_ES |
dc.description.references | Pri-Tal, O., Shaar-Moshe, L., Wiseglass, G., Peleg, Z., & Mosquna, A. (2017). Non-redundant functions of the dimeric ABA receptor BdPYL1 in the grass Brachypodium. The Plant Journal, 92(5), 774-786. doi:10.1111/tpj.13714 | es_ES |
dc.description.references | Rodriguez, P. L. (2016). Abscisic Acid Catabolism Generates Phaseic Acid, a Molecule Able to Activate a Subset of ABA Receptors. Molecular Plant, 9(11), 1448-1450. doi:10.1016/j.molp.2016.09.009 | es_ES |
dc.description.references | Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.-Y., Jamin, M., … Márquez, J. A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 462(7273), 665-668. doi:10.1038/nature08591 | es_ES |
dc.description.references | Scherlach, K., Boettger, D., Remme, N., & Hertweck, C. (2010). The chemistry and biology of cytochalasans. Natural Product Reports, 27(6), 869. doi:10.1039/b903913a | es_ES |
dc.description.references | Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 | es_ES |
dc.description.references | Schwartz, S. H., Tan, B. C., Gage, D. A., Zeevaart, J. A. D., & McCarty, D. R. (1997). Specific Oxidative Cleavage of Carotenoids by VP14 of Maize. Science, 276(5320), 1872-1874. doi:10.1126/science.276.5320.1872 | es_ES |
dc.description.references | Seo, M., Peeters, A. J. M., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J. A. D., … Koshiba, T. (2000). The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceedings of the National Academy of Sciences, 97(23), 12908-12913. doi:10.1073/pnas.220426197 | es_ES |
dc.description.references | Sheard, L. B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T. R., … Zheng, N. (2010). Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature, 468(7322), 400-405. doi:10.1038/nature09430 | es_ES |
dc.description.references | Shimada, A., Ueguchi-Tanaka, M., Nakatsu, T., Nakajima, M., Naoe, Y., Ohmiya, H., … Matsuoka, M. (2008). Structural basis for gibberellin recognition by its receptor GID1. Nature, 456(7221), 520-523. doi:10.1038/nature07546 | es_ES |
dc.description.references | Takezawa, D., Komatsu, K., & Sakata, Y. (2011). ABA in bryophytes: how a universal growth regulator in life became a plant hormone? Journal of Plant Research, 124(4), 437-453. doi:10.1007/s10265-011-0410-5 | es_ES |
dc.description.references | Vaidya, A. S., Peterson, F. C., Yarmolinsky, D., Merilo, E., Verstraeten, I., Park, S.-Y., … Cutler, S. R. (2017). A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration. ACS Chemical Biology, 12(11), 2842-2848. doi:10.1021/acschembio.7b00650 | es_ES |
dc.description.references | Villa, R., & Molinari, F. (2008). Reduction of Carbonylic and Carboxylic Groups by Plant Cell Cultures. Journal of Natural Products, 71(4), 693-696. doi:10.1021/np070386s | es_ES |
dc.description.references | Weng, J.-K., Ye, M., Li, B., & Noel, J. P. (2016). Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity. Cell, 166(4), 881-893. doi:10.1016/j.cell.2016.06.027 | es_ES |
dc.description.references | Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES. Annual Review of Plant Biology, 57(1), 781-803. doi:10.1146/annurev.arplant.57.032905.105444 | es_ES |