- -

The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author LOZANO JUSTE, JORGE es_ES
dc.contributor.author Masi, Marco es_ES
dc.contributor.author Cimmino, Alessio es_ES
dc.contributor.author Clement, Suzette es_ES
dc.contributor.author FERNÁNDEZ LÓPEZ, MARIA ANGELES es_ES
dc.contributor.author Antoni, Regina es_ES
dc.contributor.author Meyer, Susan es_ES
dc.contributor.author Rodríguez Egea, Pedro Luís es_ES
dc.contributor.author Evidente, Antonio es_ES
dc.date.accessioned 2021-01-27T04:33:14Z
dc.date.available 2021-01-27T04:33:14Z
dc.date.issued 2019-10-01 es_ES
dc.identifier.issn 0022-0957 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160007
dc.description.abstract [EN] Pyrenophoric acid (P-Acid), P-Acid B, and P-Acid C are three phytotoxic sesquiterpenoids produced by the ascomycete seed pathogen Pyrenophora semeniperda, a fungus proposed as a mycoherbicide for biocontrol of cheatgrass, an extremely invasive weed. When tested in cheatgrass bioassays, these metabolites were able to delay seed germination, with P-Acid B being the most active compound. Here, we have investigated the cross-kingdom activity of P-Acid B and its mode of action, and found that it activates the abscisic acid (ABA) signaling pathway in order to inhibit seedling establishment. P-Acid B inhibits seedling establishment in wild-type Arabidopsis thaliana, while several mutants affected in the early perception as well as in downstream ABA signaling components were insensitive to the fungal compound. However, in spite of structural similarities between ABA and P-Acid B, the latter is not able to activate the PYR/PYL family of ABA receptors. Instead, we have found that P-Acid B uses the ABA biosynthesis pathway at the level of alcohol dehydrogenase ABA2 to reduce seedling establishment. We propose that the fungus P. semeniperda manipulates plant ABA biosynthesis as a strategy to reduce seed germination, increasing its ability to cause seed mortality and thereby increase its fitness through higher reproductive success. es_ES
dc.description.sponsorship This research was funded in part by Grant JFSP-11-S-206 to SM from the Joint Fire Sciences Program of the US Departments of Agriculture and Interior and, in part, to MM, by Programme STAR 2017 financially supported by UniNA and Compagnia di San Paolo. JL-J is funded by a Marie-Sklodowska Curie Reintegration Grant H2020-MSCA-707477. Work in the PLR lab is supported by RTC-2017-6019-2 and BIO201782503-R grants from Ministerio de Ciencia, Innovacion y Universidades. MAF is a recipient of a FPU fellowship from MECD. AE is associated to the Istituto di Chimica Biomolecolare del CNR, Pozzuoli, Italy. We would like to thank Ebe Merilo (University of Tartu) for sharing nced3,5 and aba3-1 mutant seeds. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject ABA2 es_ES
dc.subject ABA biosynthesis es_ES
dc.subject Abscisic acid es_ES
dc.subject Cross-kingdom activity es_ES
dc.subject Pyrenophora semeniperda es_ES
dc.subject Pyrenophoric acid es_ES
dc.subject Pyrenophoric acid B es_ES
dc.subject Pyrenophoric acid C es_ES
dc.subject PYR/PYL es_ES
dc.subject Seed germination es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/erz306 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/707477/EU/Drought discovery to improve drought tolerance in crops/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82503-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA Y TOLERANCIA A SEQUIA MEDIANTE E3 UBIQUITIN LIGASAS QUE REGULAN EL RECAMBIO DE RECEPTORES Y FOSFATASAS 2C/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTC-2017-6019-2/ES/Descubrimiento de agroquímicos para mejorar la resistencia a la sequía de plantas de cosecha/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/USDA//JFSP-11-S-206/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Lozano Juste, J.; Masi, M.; Cimmino, A.; Clement, S.; Fernández López, MA.; Antoni, R.; Meyer, S.... (2019). The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination. Journal of Experimental Botany. 70(19):5487-5494. https://doi.org/10.1093/jxb/erz306 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/jxb/erz306 es_ES
dc.description.upvformatpinicio 5487 es_ES
dc.description.upvformatpfin 5494 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 70 es_ES
dc.description.issue 19 es_ES
dc.identifier.pmid 31257433 es_ES
dc.identifier.pmcid PMC6793445 es_ES
dc.relation.pasarela S\403512 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Compagnia di San Paolo es_ES
dc.contributor.funder U.S. Department of Agriculture es_ES
dc.contributor.funder U.S. Department of the Interior es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Università degli Studi di Napoli Federico II es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Rodrigues, A., Pizzio, G. A., & Rodriguez, P. L. (2011). Selective Inhibition of Clade A Phosphatases Type 2C by PYR/PYL/RCAR Abscisic Acid Receptors    . Plant Physiology, 158(2), 970-980. doi:10.1104/pp.111.188623 es_ES
dc.description.references Audran, C., Borel, C., Frey, A., Sotta, B., Meyer, C., Simonneau, T., & Marion-Poll, A. (1998). Expression Studies of the Zeaxanthin Epoxidase Gene inNicotiana plumbaginifolia  . Plant Physiology, 118(3), 1021-1028. doi:10.1104/pp.118.3.1021 es_ES
dc.description.references Beckstead, J., Meyer, S. E., Ishizuka, T. S., McEvoy, K. M., & Coleman, C. E. (2016). Lack of Host Specialization on Winter Annual Grasses in the Fungal Seed Bank Pathogen Pyrenophora semeniperda. PLOS ONE, 11(3), e0151058. doi:10.1371/journal.pone.0151058 es_ES
dc.description.references Beckstead, J., Meyer, S. E., Molder, C. J., & Smith, C. (2007). A Race for Survival: Can Bromus tectorum Seeds Escape Pyrenophora semeniperda-caused Mortality by Germinating Quickly? Annals of Botany, 99(5), 907-914. doi:10.1093/aob/mcm028 es_ES
dc.description.references Benson, C. L., Kepka, M., Wunschel, C., Rajagopalan, N., Nelson, K. M., Christmann, A., … Loewen, M. C. (2015). Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana. Phytochemistry, 113, 96-107. doi:10.1016/j.phytochem.2014.03.017 es_ES
dc.description.references Cheng, W.-H., Endo, A., Zhou, L., Penney, J., Chen, H.-C., Arroyo, A., … Sheen, J. (2002). A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions. The Plant Cell, 14(11), 2723-2743. doi:10.1105/tpc.006494 es_ES
dc.description.references Cimmino, A., Masi, M., Evidente, M., Superchi, S., & Evidente, A. (2015). Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Natural Product Reports, 32(12), 1629-1653. doi:10.1039/c5np00081e es_ES
dc.description.references Dupeux, F., Antoni, R., Betz, K., Santiago, J., Gonzalez-Guzman, M., Rodriguez, L., … Márquez, J. A. (2011). Modulation of Abscisic Acid Signaling in Vivo by an Engineered Receptor-Insensitive Protein Phosphatase Type 2C Allele    . Plant Physiology, 156(1), 106-116. doi:10.1104/pp.110.170894 es_ES
dc.description.references Finch-Boekweg, H., Gardner, J. S., Allen, P. S., & Geary, B. (2016). Postdispersal Infection and Disease Development of Pyrenophora semeniperda in Bromus tectorum Seeds. Phytopathology®, 106(3), 236-243. doi:10.1094/phyto-09-15-0229-r es_ES
dc.description.references Frey, A., Effroy, D., Lefebvre, V., Seo, M., Perreau, F., Berger, A., … Marion-Poll, A. (2012). Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. The Plant Journal, 70(3), 501-512. doi:10.1111/j.1365-313x.2011.04887.x es_ES
dc.description.references Germino, M. J., Chambers, J. C., & Brown, C. S. (Eds.). (2016). Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US. Springer Series on Environmental Management. doi:10.1007/978-3-319-24930-8 es_ES
dc.description.references González-Guzmán, M., Abia, D., Salinas, J., Serrano, R., & Rodríguez, P. L. (2004). Two New Alleles of the abscisic aldehyde oxidase 3 Gene Reveal Its Role in Abscisic Acid Biosynthesis in Seeds. Plant Physiology, 135(1), 325-333. doi:10.1104/pp.103.036590 es_ES
dc.description.references González-Guzmán, M., Apostolova, N., Bellés, J. M., Barrero, J. M., Piqueras, P., Ponce, M. R., … Rodríguez, P. L. (2002). The Short-Chain Alcohol Dehydrogenase ABA2 Catalyzes the Conversion of Xanthoxin to Abscisic Aldehyde[W]. The Plant Cell, 14(8), 1833-1846. doi:10.1105/tpc.002477 es_ES
dc.description.references Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W., … Rodriguez, P. L. (2012). Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid. The Plant Cell, 24(6), 2483-2496. doi:10.1105/tpc.112.098574 es_ES
dc.description.references Hartung, W. (2010). The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Functional Plant Biology, 37(9), 806. doi:10.1071/fp10058 es_ES
dc.description.references He, Y., Hao, Q., Li, W., Yan, C., Yan, N., & Yin, P. (2014). Identification and Characterization of ABA Receptors in Oryza sativa. PLoS ONE, 9(4), e95246. doi:10.1371/journal.pone.0095246 es_ES
dc.description.references Iuchi, S., Kobayashi, M., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2000). A Stress-Inducible Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Abscisic Acid Biosynthesis under Water Stress in Drought-Tolerant Cowpea. Plant Physiology, 123(2), 553-562. doi:10.1104/pp.123.2.553 es_ES
dc.description.references Kepka, M., Benson, C. L., Gonugunta, V. K., Nelson, K. M., Christmann, A., Grill, E., & Abrams, S. R. (2011). Action of Natural Abscisic Acid Precursors and Catabolites on Abscisic Acid Receptor Complexes  . Plant Physiology, 157(4), 2108-2119. doi:10.1104/pp.111.182584 es_ES
dc.description.references Leon-Kloosterziel, K. M., Gil, M. A., Ruijs, G. J., Jacobsen, S. E., Olszewski, N. E., Schwartz, S. H., … Koornneef, M. (1996). Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. The Plant Journal, 10(4), 655-661. doi:10.1046/j.1365-313x.1996.10040655.x es_ES
dc.description.references Leung, J., & Giraudat, J. (1998). ABSCISIC ACID SIGNAL TRANSDUCTION. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 199-222. doi:10.1146/annurev.arplant.49.1.199 es_ES
dc.description.references Lozano-Juste, J., & Cutler, S. R. (2016). Hormone signalling: ABA has a breakdown. Nature Plants, 2(9). doi:10.1038/nplants.2016.137 es_ES
dc.description.references Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., … Marion-Poll, A. (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. The EMBO Journal, 15(10), 2331-2342. doi:10.1002/j.1460-2075.1996.tb00589.x es_ES
dc.description.references Masi, M., Evidente, A., Meyer, S., Nicholson, J., & Muñoz, A. (2013). Effect of strain and cultural conditions on the production of cytochalasin B by the potential mycoherbicidePyrenophora semeniperda(Pleosporaceae, Pleosporales). Biocontrol Science and Technology, 24(1), 53-64. doi:10.1080/09583157.2013.844769 es_ES
dc.description.references Masi, M., Meyer, S., Cimmino, A., Andolfi, A., & Evidente, A. (2014). Pyrenophoric Acid, a Phytotoxic Sesquiterpenoid Penta-2,4-dienoic Acid Produced by a Potential Mycoherbicide, Pyrenophora semeniperda. Journal of Natural Products, 77(4), 925-930. doi:10.1021/np4009915 es_ES
dc.description.references Masi, M., Meyer, S., Cimmino, A., Clement, S., Black, B., & Evidente, A. (2014). Pyrenophoric Acids B and C, Two New Phytotoxic Sesquiterpenoids Produced by Pyrenophora semeniperda. Journal of Agricultural and Food Chemistry, 62(42), 10304-10311. doi:10.1021/jf5035515 es_ES
dc.description.references Masi, M., Meyer, S., Clement, S., Andolfi, A., Cimmino, A., & Evidente, A. (2014). Spirostaphylotrichin W, a spirocyclic γ-lactam isolated from liquid culture of Pyrenophora semeniperda, a potential mycoherbicide for cheatgrass (Bromus tectorum) biocontrol. Tetrahedron, 70(7), 1497-1501. doi:10.1016/j.tet.2013.12.056 es_ES
dc.description.references Melcher, K., Ng, L.-M., Zhou, X. E., Soon, F.-F., Xu, Y., Suino-Powell, K. M., … Xu, H. E. (2009). A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature, 462(7273), 602-608. doi:10.1038/nature08613 es_ES
dc.description.references Meyer, S. E., Masi, M., Clement, S., Davis, T. L., & Beckstead, J. (2015). Mycelial growth rate and toxin production in the seed pathogenPyrenophora semeniperda: resource trade-offs and temporally varying selection. Plant Pathology, 64(6), 1450-1460. doi:10.1111/ppa.12377 es_ES
dc.description.references Murase, K., Hirano, Y., Sun, T., & Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 456(7221), 459-463. doi:10.1038/nature07519 es_ES
dc.description.references Nambara, E., & Marion-Poll, A. (2005). ABSCISIC ACID BIOSYNTHESIS AND CATABOLISM. Annual Review of Plant Biology, 56(1), 165-185. doi:10.1146/annurev.arplant.56.032604.144046 es_ES
dc.description.references Okamoto, M., Peterson, F. C., Defries, A., Park, S.-Y., Endo, A., Nambara, E., … Cutler, S. R. (2013). Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proceedings of the National Academy of Sciences, 110(29), 12132-12137. doi:10.1073/pnas.1305919110 es_ES
dc.description.references Pri-Tal, O., Shaar-Moshe, L., Wiseglass, G., Peleg, Z., & Mosquna, A. (2017). Non-redundant functions of the dimeric ABA receptor BdPYL1 in the grass Brachypodium. The Plant Journal, 92(5), 774-786. doi:10.1111/tpj.13714 es_ES
dc.description.references Rodriguez, P. L. (2016). Abscisic Acid Catabolism Generates Phaseic Acid, a Molecule Able to Activate a Subset of ABA Receptors. Molecular Plant, 9(11), 1448-1450. doi:10.1016/j.molp.2016.09.009 es_ES
dc.description.references Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.-Y., Jamin, M., … Márquez, J. A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 462(7273), 665-668. doi:10.1038/nature08591 es_ES
dc.description.references Scherlach, K., Boettger, D., Remme, N., & Hertweck, C. (2010). The chemistry and biology of cytochalasans. Natural Product Reports, 27(6), 869. doi:10.1039/b903913a es_ES
dc.description.references Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 es_ES
dc.description.references Schwartz, S. H., Tan, B. C., Gage, D. A., Zeevaart, J. A. D., & McCarty, D. R. (1997). Specific Oxidative Cleavage of Carotenoids by VP14 of Maize. Science, 276(5320), 1872-1874. doi:10.1126/science.276.5320.1872 es_ES
dc.description.references Seo, M., Peeters, A. J. M., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J. A. D., … Koshiba, T. (2000). The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceedings of the National Academy of Sciences, 97(23), 12908-12913. doi:10.1073/pnas.220426197 es_ES
dc.description.references Sheard, L. B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T. R., … Zheng, N. (2010). Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature, 468(7322), 400-405. doi:10.1038/nature09430 es_ES
dc.description.references Shimada, A., Ueguchi-Tanaka, M., Nakatsu, T., Nakajima, M., Naoe, Y., Ohmiya, H., … Matsuoka, M. (2008). Structural basis for gibberellin recognition by its receptor GID1. Nature, 456(7221), 520-523. doi:10.1038/nature07546 es_ES
dc.description.references Takezawa, D., Komatsu, K., & Sakata, Y. (2011). ABA in bryophytes: how a universal growth regulator in life became a plant hormone? Journal of Plant Research, 124(4), 437-453. doi:10.1007/s10265-011-0410-5 es_ES
dc.description.references Vaidya, A. S., Peterson, F. C., Yarmolinsky, D., Merilo, E., Verstraeten, I., Park, S.-Y., … Cutler, S. R. (2017). A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration. ACS Chemical Biology, 12(11), 2842-2848. doi:10.1021/acschembio.7b00650 es_ES
dc.description.references Villa, R., & Molinari, F. (2008). Reduction of Carbonylic and Carboxylic Groups by Plant Cell Cultures. Journal of Natural Products, 71(4), 693-696. doi:10.1021/np070386s es_ES
dc.description.references Weng, J.-K., Ye, M., Li, B., & Noel, J. P. (2016). Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity. Cell, 166(4), 881-893. doi:10.1016/j.cell.2016.06.027 es_ES
dc.description.references Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES. Annual Review of Plant Biology, 57(1), 781-803. doi:10.1146/annurev.arplant.57.032905.105444 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem