Elmer, P. A. G., & Reglinski, T. (2006). Biosuppression of Botrytis cinerea in grapes. Plant Pathology, 55(2), 155-177. doi:10.1111/j.1365-3059.2006.01348.x
Fillinger, S., & Walker, A.-S. (2015). Chemical Control and Resistance Management of Botrytis Diseases. Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems, 189-216. doi:10.1007/978-3-319-23371-0_10
WILLIAMSON, B., TUDZYNSKI, B., TUDZYNSKI, P., & VAN KAN, J. A. L. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561-580. doi:10.1111/j.1364-3703.2007.00417.x
[+]
Elmer, P. A. G., & Reglinski, T. (2006). Biosuppression of Botrytis cinerea in grapes. Plant Pathology, 55(2), 155-177. doi:10.1111/j.1365-3059.2006.01348.x
Fillinger, S., & Walker, A.-S. (2015). Chemical Control and Resistance Management of Botrytis Diseases. Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems, 189-216. doi:10.1007/978-3-319-23371-0_10
WILLIAMSON, B., TUDZYNSKI, B., TUDZYNSKI, P., & VAN KAN, J. A. L. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561-580. doi:10.1111/j.1364-3703.2007.00417.x
Nigro, F., Schena, L., Ligorio, A., Pentimone, I., Ippolito, A., & Salerno, M. G. (2006). Control of table grape storage rots by pre-harvest applications of salts. Postharvest Biology and Technology, 42(2), 142-149. doi:10.1016/j.postharvbio.2006.06.005
Pertot, I., Caffi, T., Rossi, V., Mugnai, L., Hoffmann, C., Grando, M. S., … Anfora, G. (2017). A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Protection, 97, 70-84. doi:10.1016/j.cropro.2016.11.025
Cañamás, T. P., Viñas, I., Torres, R., Usall, J., Solsona, C., & Teixidó, N. (2011). Field applications of improved formulations of Candida sake CPA-1 for control of Botrytis cinerea in grapes. Biological Control, 56(2), 150-158. doi:10.1016/j.biocontrol.2010.11.007
Calvo-Garrido, C., Elmer, P. A. G., Viñas, I., Usall, J., Bartra, E., & Teixidó, N. (2012). Biological control of botrytis bunch rot in organic wine grapes with the yeast antagonistCandida sakeCPA-1. Plant Pathology, 62(3), 510-519. doi:10.1111/j.1365-3059.2012.02684.x
Calvo-Garrido, C., Teixidó, N., Roudet, J., Viñas, I., Usall, J., & Fermaud, M. (2014). Biological control of Botrytis bunch rot in Atlantic climate vineyards with Candida sake CPA-1 and its survival under limiting conditions of temperature and humidity. Biological Control, 79, 24-35. doi:10.1016/j.biocontrol.2014.05.011
Garrido, C. C., Usall, J., Torres, R., & Teixidó, N. (2017). Effective control of Botrytis bunch rot in commercial vineyards by large-scale application of Candida sake CPA-1. BioControl, 62(2), 161-173. doi:10.1007/s10526-017-9789-9
Carbó, A., Torres, R., Usall, J., Solsona, C., & Teixidó, N. (2017). Fluidised-bed spray-drying formulations of Candida sake CPA-1 by adding biodegradable coatings to enhance their survival under stress conditions. Applied Microbiology and Biotechnology, 101(21), 7865-7876. doi:10.1007/s00253-017-8529-5
Carbó, A., Torres, R., Teixidó, N., Usall, J., Medina, A., & Magan, N. (2018). Impact of climate change environmental conditions on the resilience of different formulations of the biocontrol agentCandida sakeCPA-1 on grapes. Letters in Applied Microbiology, 67(1), 2-8. doi:10.1111/lam.12889
Abadias, M., Teixido, N., Usall, J., & Vinas, I. (2003). Optimization of growth conditions of the postharvest biocontrol agent Candida sake CPA-1 in a lab-scale fermenter. Journal of Applied Microbiology, 95(2), 301-309. doi:10.1046/j.1365-2672.2003.01976.x
Torres, R., Usall, J., Teixido, N., Abadias, M., & Vinas, I. (2003). Liquid formulation of the biocontrol agent Candida sake by modifying water activity or adding protectants. Journal of Applied Microbiology, 94(2), 330-339. doi:10.1046/j.1365-2672.2003.01843.x
Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., & Jijakli, M. H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122, 22-29. doi:10.1016/j.postharvbio.2016.04.006
ABADIAS, M., TEIXIDÓ, N., USALL, J., BENABARRE, A., & VIÑAS, I. (2001). Viability, Efficacy, and Storage Stability of Freeze-Dried Biocontrol Agent Candida sake Using Different Protective and Rehydration Media. Journal of Food Protection, 64(6), 856-861. doi:10.4315/0362-028x-64.6.856
Abadias, M., Teixidó, N., Usall, J., Solsona, C., & Viñas, I. (2005). Survival of the postharvest biocontrol yeastCandida sakeCPA-1 after dehydration by spray-drying. Biocontrol Science and Technology, 15(8), 835-846. doi:10.1080/09583150500187041
Cañamás, T. P., Viñas, I., Usall, J., Magan, N., Solsona, C., & Teixidó, N. (2008). Impact of mild heat treatments on induction of thermotolerance in the biocontrol yeast Candida sake CPA-1 and viability after spray-drying. Journal of Applied Microbiology, 104(3), 767-775. doi:10.1111/j.1365-2672.2007.03590.x
Carbó, A., Torres, R., Usall, J., Fons, E., & Teixidó, N. (2017). Dry formulations of the biocontrol agent Candida sake
CPA-1 using fluidised bed drying to control the main postharvest diseases on fruits. Journal of the Science of Food and Agriculture, 97(11), 3691-3698. doi:10.1002/jsfa.8229
Gotor-Vila, A., Usall, J., Torres, R., Solsona, C., & Teixidó, N. (2017). Biocontrol products based on Bacillus amyloliquefaciens CPA-8 using fluid-bed spray-drying process to control postharvest brown rot in stone fruit. LWT - Food Science and Technology, 82, 274-282. doi:10.1016/j.lwt.2017.04.034
Chumthong, A., Wiwattanapatapee, R., Viernstein, H., Pengnoo, A., & Kanjanamaneesathian, M. (2016). Spray-dried powder ofBacillus megateriumfor control of rice sheath blight disease: Formulation protocol and efficacy testing in laboratory and greenhouse. Cereal Research Communications, 44(1), 131-140. doi:10.1556/0806.43.2015.034
Stephan, D., Da Silva, A.-P. M., & Bisutti, I. L. (2016). Optimization of a freeze-drying process for the biocontrol agent Pseudomonas spp. and its influence on viability, storability and efficacy. Biological Control, 94, 74-81. doi:10.1016/j.biocontrol.2015.12.004
Pertot, I., Giovannini, O., Benanchi, M., Caffi, T., Rossi, V., & Mugnai, L. (2017). Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Protection, 97, 85-93. doi:10.1016/j.cropro.2017.01.010
Ciliberti, N., Fermaud, M., Roudet, J., & Rossi, V. (2015). Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype. Phytopathology®, 105(8), 1090-1096. doi:10.1094/phyto-10-14-0264-r
Calvo-Garrido, C., Viñas, I., Elmer, P. A., Usall, J., & Teixidó, N. (2013). Suppression of Botrytis cinerea
on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Pest Management Science, 70(4), 595-602. doi:10.1002/ps.3587
Lahlali, R., Brostaux, Y., & Jijakli, M. H. (2011). Control of Apple Blue Mold by the Antagonistic Yeast Pichia anomala Strain K: Screening of UV Protectants for Preharvest Application. Plant Disease, 95(3), 311-316. doi:10.1094/pdis-04-10-0265
Lahlali, R., & Jijakli, M. H. (2009). Enhancement of the biocontrol agent Candida oleophila (strain O) survival and control efficiency under extreme conditions of water activity and relative humidity. Biological Control, 51(3), 403-408. doi:10.1016/j.biocontrol.2009.07.014
Marín, A., Cháfer, M., Atarés, L., Chiralt, A., Torres, R., Usall, J., & Teixidó, N. (2016). Effect of different coating-forming agents on the efficacy of the biocontrol agent Candida sake CPA-1 for control of Botrytis cinerea on grapes. Biological Control, 96, 108-119. doi:10.1016/j.biocontrol.2016.02.012
[-]