Mostrar el registro sencillo del ítem
dc.contributor.author | Márquez-Molins, Joan | es_ES |
dc.contributor.author | NAVARRO BOHIGUES, JOSE ANTONIO | es_ES |
dc.contributor.author | Pallás Benet, Vicente | es_ES |
dc.contributor.author | Gomez, Gustavo Germán | es_ES |
dc.date.accessioned | 2021-01-28T04:31:32Z | |
dc.date.available | 2021-01-28T04:31:32Z | |
dc.date.issued | 2019-08-01 | es_ES |
dc.identifier.issn | 1746-4811 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160075 | |
dc.description.abstract | [EN] Background Viroid research generally relies on infectious cDNA clones that consist of dimers of the entire viroid sequence. At present, those dimers are generated by self-ligation of monomeric cDNA, a strategy that presents several disadvantages: (i) low efficiency, (ii) it is a non-oriented reaction requiring tedious screenings and (iii) additional steps are required for cloning into a binary vector for agroinfiltration or for in vitro RNA production. Results We have developed a novel strategy for simultaneous construction of a viroid dimeric cDNA and cloning into a multipurpose binary vector ready for agroinfiltration or in vitro transcription. The assembly is based on IIs restriction enzymes and positive selection and supposes a universal procedure for obtaining infectious clones of a viroid independently of its sequence, with a high efficiency. Thus, infectious clones of one viroid of each family were obtained and its infectivity was analyzed by molecular hybridization. Conclusion This is a zero-background strategy for direct cloning into a binary vector, optimized for the generation of infectious viroids. As a result, this methodology constitutes a powerful tool for viroid research and exemplifies the applicability of type IIs restriction enzymes and the lethal gene ccdB to design efficient and affordable direct cloning approaches of PCR products into binary vectors. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Economy and Competitiveness (co-supported by FEDER) Grants BIO2017-88321-R (VP) and AGL2016-79825-R (GG). The funders had no role in the experiment design, data analysis, decision to publish, or preparation of the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer (Biomed Central Ltd.) | es_ES |
dc.relation.ispartof | Plant Methods | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Viroid | es_ES |
dc.subject | Cloning | es_ES |
dc.subject | Dimers | es_ES |
dc.subject | IIs enzymes | es_ES |
dc.subject | Agro-infiltration | es_ES |
dc.title | Highly efficient construction of infectious viroid-derived clones | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s13007-019-0470-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2016-79825-R/ES/VALIDACION FUNCIONAL DE LAS REDES DE SNCRNAS QUE REGULAN LA REPUESTA A ESTRES EN MELON. ANALISIS DE SU POTENCIAL COMO FUENTE DE TOLERANCIA A CONDICIONES AMBIENTALES ADVERSAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-88321-R/ES/DESCRIFRANDO INTERACCIONES VIRUS-PLANTA ESENCIALES PARA LA SUSCEPTIBILIDAD Y%2FO RESISTENCIA EN DOS PATOSISTEMAS AGRONOMICAMENTE RELEVANTES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Márquez-Molins, J.; Navarro Bohigues, JA.; Pallás Benet, V.; Gomez, GG. (2019). Highly efficient construction of infectious viroid-derived clones. Plant Methods. 15:1-8. https://doi.org/10.1186/s13007-019-0470-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s13007-019-0470-4 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.identifier.pmid | 31388344 | es_ES |
dc.identifier.pmcid | PMC6670230 | es_ES |
dc.relation.pasarela | S\393280 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Flores R, Minoia S, Carbonell A, Gisel A, Delgado S, López-Carrasco A, et al. Viroids, the simplest RNA replicons: how they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res. 2015;209:136–45. | es_ES |
dc.description.references | Flores R, Hernández C, de Alba AEM, Daròs J-A, Di Serio F. Viroids and viroid-host interactions. Annu Rev Phytopathol. 2005;43:117–39. | es_ES |
dc.description.references | Gómez G, Martínez G, Pallás V. Interplay between viroid-induced pathogenesis and RNA silencing pathways. Trends Plant Sci. 2009;14:264–9. | es_ES |
dc.description.references | Di Serio F, Flores R, Verhoeven JTJ, Li SF, Pallás V, Randles JW, et al. Current status of viroid taxonomy. Arch Virol. 2014;159:3467–78. | es_ES |
dc.description.references | Branch A, Robertson H. A replication cycle for viroids and other small infectious RNA’s. Science (80−). 1984;223:450–5. | es_ES |
dc.description.references | Daròs JA, Marcos JF, Hernández C, Flores R. Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proc Natl Acad Sci USA. 1994;91:12813–7. | es_ES |
dc.description.references | Gago S, Elena SF, Flores R, Sanjuán R. Extremely High Mutation Rate of a Hammerhead Viroid. Science (80-). 2009;323:1308–1308. | es_ES |
dc.description.references | Steger G, Riesner D. Viroid research and its significance for RNA technology and basic biochemistry. Nucleic Acids Res. 2018;46:10563–76. | es_ES |
dc.description.references | Gómez G, Torres H, Pallás V. Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. Plant J. 2004;41:107–16. | es_ES |
dc.description.references | Takeda R, Petrov AI, Leontis NB, Ding B. A three-dimensional RNA motif in Potato spindle tuber viroid mediates trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana. Plant Cell. 2011;23:258–72. | es_ES |
dc.description.references | Gómez G, Pallás V. Studies on subcellular compartmentalization of plant pathogenic noncoding RNAs give new insights into the intracellular RNA-traffic mechanisms. Plant Physiol. 2012;159:558–64. | es_ES |
dc.description.references | Wassenegger M, Heimes S, Riedel L, Sänger HL. RNA-directed de novo methylation of genomic sequences in plants. Cell. 1994;76:567–76. | es_ES |
dc.description.references | Martinez G, Castellano M, Tortosa M, Pallas V, Gomez G. A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Res. 2014;42:1553–62. | es_ES |
dc.description.references | Castellano M, Martinez G, Marques MC, Moreno-Romero J, Köhler C, Pallas V, et al. Changes in the DNA methylation pattern of the host male gametophyte of viroid-infected cucumber plants. J Exp Bot. 2016;67:5857–68. | es_ES |
dc.description.references | Cress DE, Kiefer MC, Owens RA. Construction of infectious potato spindle tuber viroid cDNA clones. Nucleic Acids Res. 1983;11:6821–35. | es_ES |
dc.description.references | Tabler M, Sänger HL. Infectivity studies on different potato spindle tuber viroid (PSTV) RNAs synthesized in vitro with the SP6 transcription system. EMBO J. 1985;4:2191–9. | es_ES |
dc.description.references | Visvader JE, Forster AC, Symons RH. Infectivity and in vitro mutagenesis of monomeric cDNA clones of citrus exocortis viroid indicates the site of processing of viroid precursors. Nucleic Acids Res. 1985;13:5843–56. | es_ES |
dc.description.references | Gardner RC, Chonoles KR, Owens RA. Potato spindle tuber viroid infections mediated by the Ti plasmid of Agrobacterium tumefaciens. Plant Mol Biol. 1986;6:221–8. | es_ES |
dc.description.references | Minoia S, Navarro B, Delgado S, Di Serio F, Flores R. Viroid RNA turnover: characterization of the subgenomic RNAs of potato spindle tuber viroid accumulating in infected tissues provides insights into decay pathways operating in vivo. Nucleic Acids Res. 2015;43:2313–25. | es_ES |
dc.description.references | López-Carrasco A, Ballesteros C, Sentandreu V, Delgado S, Gago-Zachert S, Flores R, et al. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLoS Pathog. 2017;13:e1006547. | es_ES |
dc.description.references | Giguère T, Adkar-Purushothama CR, Perreault J-P. Comprehensive secondary structure elucidation of four genera of the family Pospiviroidae. PLoS ONE. 2014;9:e98655. | es_ES |
dc.description.references | Adkar-Purushothama CR, Brosseau C, Giguère T, Sano T, Moffett P, Perreault J-P. Small RNA derived from the virulence modulating region of the potato spindle tuber viroid silences callose synthase genes of tomato plants. Plant Cell. 2015;27:2178–94. | es_ES |
dc.description.references | Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5. | es_ES |
dc.description.references | Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE. 2009;4:e5553. | es_ES |
dc.description.references | Carbonell A, Takeda A, Fahlgren N, Johnson SC, Cuperus JT, Carrington JC. New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol. 2014;165:15–29. | es_ES |
dc.description.references | Genovés A, Navarro JA, Pallás V. Functional analysis of the five melon necrotic spot virus genome-encoded proteins. J Gen Virol. 2006;87:2371–80. | es_ES |
dc.description.references | Gómez G, Pallás V. A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA. J Virol. 2004;78:10104–10. | es_ES |
dc.description.references | Herranz MC, Sanchez-Navarro JA, Aparicio F, Pallás V. Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or ‘polyprobe’. J Virol Methods. 2005;124:49–55. | es_ES |
dc.description.references | Daròs JA. Eggplant latent viroid: a friendly experimental system in the family Avsunviroidae. Mol Plant Pathol. 2016;17:1170–7. | es_ES |
dc.description.references | Lin D, O’Callaghan CA. MetClo: methylase-assisted hierarchical DNA assembly using a single type IIS restriction enzyme. Nucleic Acids Res. 2018;46:e113. | es_ES |
dc.description.references | Sanjuán R, Daròs J-A. One-step site-directed mutagenesis of viroid dimeric cDNA. J Virol Methods. 2007;145:71–5. | es_ES |