Lloyd, A. C., & Cackette, T. A. (2001). Diesel Engines: Environmental Impact and Control. Journal of the Air & Waste Management Association, 51(6), 809-847. doi:10.1080/10473289.2001.10464315
Fiebig, M., Wiartalla, A., Holderbaum, B., & Kiesow, S. (2014). Particulate emissions from diesel engines: correlation between engine technology and emissions. Journal of Occupational Medicine and Toxicology, 9(1), 6. doi:10.1186/1745-6673-9-6
C. Directive, 91/441/EEC of 26 June 1991 amending Directive 70/220, EEC on the approximation of the laws of the Member States relating to measures to be taken against air pollution by emissions from motor vehicles.
[+]
Lloyd, A. C., & Cackette, T. A. (2001). Diesel Engines: Environmental Impact and Control. Journal of the Air & Waste Management Association, 51(6), 809-847. doi:10.1080/10473289.2001.10464315
Fiebig, M., Wiartalla, A., Holderbaum, B., & Kiesow, S. (2014). Particulate emissions from diesel engines: correlation between engine technology and emissions. Journal of Occupational Medicine and Toxicology, 9(1), 6. doi:10.1186/1745-6673-9-6
C. Directive, 91/441/EEC of 26 June 1991 amending Directive 70/220, EEC on the approximation of the laws of the Member States relating to measures to be taken against air pollution by emissions from motor vehicles.
E. Regulation, Regulation (EC) No 595/2009 of the European Parliament and of the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (Euro VI) and on access to vehicle repair and maintenance information and amending Regulation (EC) No 715/2007 and Directive 2007/46/EC and repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC, Off J Eur Communities - Legislation 188.
Agarwal, D., Singh, S. K., & Agarwal, A. K. (2011). Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine. Applied Energy, 88(8), 2900-2907. doi:10.1016/j.apenergy.2011.01.066
Divekar, P. S., Chen, X., Tjong, J., & Zheng, M. (2016). Energy efficiency impact of EGR on organizing clean combustion in diesel engines. Energy Conversion and Management, 112, 369-381. doi:10.1016/j.enconman.2016.01.042
Lattimore, T., Wang, C., Xu, H., Wyszynski, M. L., & Shuai, S. (2016). Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine. Applied Energy, 161, 256-267. doi:10.1016/j.apenergy.2015.09.080
Li, X., Xu, Z., Guan, C., & Huang, Z. (2014). Impact of exhaust gas recirculation (EGR) on soot reactivity from a diesel engine operating at high load. Applied Thermal Engineering, 68(1-2), 100-106. doi:10.1016/j.applthermaleng.2014.04.029
Singh, S. K., Agarwal, A. K., & Sharma, M. (2006). Experimental investigations of heavy metal addition in lubricating oil and soot deposition in an EGR operated engine. Applied Thermal Engineering, 26(2-3), 259-266. doi:10.1016/j.applthermaleng.2005.05.004
George, S., Balla, S., & Gautam, M. (2007). Effect of diesel soot contaminated oil on engine wear. Wear, 262(9-10), 1113-1122. doi:10.1016/j.wear.2006.11.002
Fang, J., Meng, Z., Li, J., Pu, Y., Du, Y., Li, J., … G. Chase, G. (2017). The influence of ash on soot deposition and regeneration processes in diesel particular filter. Applied Thermal Engineering, 124, 633-640. doi:10.1016/j.applthermaleng.2017.06.076
Behn, A., Feindt, M., Matz, G., Krause, S., & Gohl, M. (2015). Fuel Transport across the Piston Ring Pack: Measurement System Development and Experiments for Online Fuel Transport and Oil Dilution Measurements. SAE Technical Paper Series. doi:10.4271/2015-24-2535
Aldajah, S., Ajayi, O. O., Fenske, G. R., & Goldblatt, I. L. (2007). Effect of exhaust gas recirculation (EGR) contamination of diesel engine oil on wear. Wear, 263(1-6), 93-98. doi:10.1016/j.wear.2006.12.055
Dennis, A. J., Garner, C. P., & Taylor, D. H. C. (1999). The Effect of EGR on Diesel Engine Wear. SAE Technical Paper Series. doi:10.4271/1999-01-0839
Heredia-Cancino, J. A., Ramezani, M., & Álvarez-Ramos, M. E. (2018). Effect of degradation on tribological performance of engine lubricants at elevated temperatures. Tribology International, 124, 230-237. doi:10.1016/j.triboint.2018.04.015
Mc Geehan, J. A., Alexander, W., Ziemer, J. N., Roby, S. H., & Graham, J. P. (1999). The Pivotal Role of Crankcase Oil in Preventing Soot Wear and Extending Filter Life in Low Emission Diesel Engines. SAE Technical Paper Series. doi:10.4271/1999-01-1525
Motamen Salehi, F., Morina, A., & Neville, A. (2017). The effect of soot and diesel contamination on wear and friction of engine oil pump. Tribology International, 115, 285-296. doi:10.1016/j.triboint.2017.05.041
Lenk, J.-R., Meyer, L., & Provase, I. S. (2014). Oil Dilution Model for Combustion Engines - Detection of Fuel Accumulation and Evaporation. SAE Technical Paper Series. doi:10.4271/2014-36-0170
Gautam, M., Chitoor, K., Durbha, M., & Summers, J. C. (1999). Effect of diesel soot contaminated oil on engine wear — investigation of novel oil formulations. Tribology International, 32(12), 687-699. doi:10.1016/s0301-679x(99)00081-x
Wattrus, M. (2013). Fuel Property Effects on Oil Dilution in Diesel Engines. SAE International Journal of Fuels and Lubricants, 6(3), 794-806. doi:10.4271/2013-01-2680
Andreae, M., Fang, H., & Bhandary, K. (2007). Biodiesel and Fuel Dilution of Engine Oil. SAE Technical Paper Series. doi:10.4271/2007-01-4036
Antusch, S., Dienwiebel, M., Nold, E., Albers, P., Spicher, U., & Scherge, M. (2010). On the tribochemical action of engine soot. Wear, 269(1-2), 1-12. doi:10.1016/j.wear.2010.02.028
Sato, H., Tokuoka, N., Yamamoto, H., & Sasaki, M. (1999). Study on Wear Mechanism by Soot Contaminated in Engine Oil (First Report: Relation Between Characteristics of Used Oil and Wear). SAE Technical Paper Series. doi:10.4271/1999-01-3573
Green, D. A., Lewis, R., & Dwyer-Joyce, R. S. (2006). Wear effects and mechanisms of soot-contaminated automotive lubricants. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 220(3), 159-169. doi:10.1243/13506501jet140
Tang, Z., Feng, Z., Jin, P., Fu, X., & Chen, H. (2017). The soot handling ability requirements and how to solve soot related viscosity increases of heavy duty diesel engine oil. Industrial Lubrication and Tribology, 69(5), 683-689. doi:10.1108/ilt-02-2015-0024
George, S., Balla, S., Gautam, V., & Gautam, M. (2007). Effect of diesel soot on lubricant oil viscosity. Tribology International, 40(5), 809-818. doi:10.1016/j.triboint.2006.08.002
Ryason, P. R., Chan, I. Y., & Gilmore, J. T. (1990). Polishing wear by soot. Wear, 137(1), 15-24. doi:10.1016/0043-1648(90)90014-2
Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106
Broatch, A., Novella, R., García-Tíscar, J., & Gomez-Soriano, J. (2019). On the shift of acoustic characteristics of compression-ignited engines when operating with gasoline partially premixed combustion. Applied Thermal Engineering, 146, 223-231. doi:10.1016/j.applthermaleng.2018.09.089
Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1
Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006
Zhu, X., Zhong, C., & Zhe, J. (2017). Lubricating oil conditioning sensors for online machine health monitoring – A review. Tribology International, 109, 473-484. doi:10.1016/j.triboint.2017.01.015
Bredin, A., Larcher, A. V., & Mullins, B. J. (2011). Thermogravimetric analysis of carbon black and engine soot—Towards a more robust oil analysis method. Tribology International, 44(12), 1642-1650. doi:10.1016/j.triboint.2011.06.002
Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081
Broatch, A., Novella, R., García-Tíscar, J., & Gomez-Soriano, J. (2018). Potential of dual spray injectors for optimising the noise emission of gasoline partially premixed combustion in a 2-stroke HSDI CI engine. Applied Thermal Engineering, 134, 369-378. doi:10.1016/j.applthermaleng.2018.01.108
Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452
Angelberger, C., Poinsot, T., & Delhay, B. (1997). Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations. SAE Technical Paper Series. doi:10.4271/972881
Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9
Colin, O., & Benkenida, A. (2004). The 3-Zones Extended Coherent Flame Model (Ecfm3z) for Computing Premixed/Diffusion Combustion. Oil & Gas Science and Technology, 59(6), 593-609. doi:10.2516/ogst:2004043
K. Huh, A phenomenological model of diesel spray atomization, Proc. of the international conf. on multiphase flows' 91-tsukuba.
Reitz, R. D., & Diwakar, R. (1987). Structure of High-Pressure Fuel Sprays. SAE Technical Paper Series. doi:10.4271/870598
Habchi, C., Lafossas, F. A., Béard, P., & Broseta, D. (2004). Formulation of a One-Component Fuel Lumping Model to Assess the Effects of Fuel Thermodynamic Properties on Internal Combustion Engine Mixture Preparation and Combustion. SAE Technical Paper Series. doi:10.4271/2004-01-1996
Karlsson, A., Magnusson, I., Balthasar, M., & Mauss, F. (1998). Simulation of Soot Formation Under Diesel Engine Conditions Using a Detailed Kinetic Soot Model. SAE Technical Paper Series. doi:10.4271/981022
Hiroyasu, H., & Kadota, T. (1976). Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines. SAE Technical Paper Series. doi:10.4271/760129
Wiedenhoefer, J. F., & Reitz, R. D. (2003). Multidimensional Modeling of the Effects of Radiation and Soot Deposition in Heavy-duty Diesel Engines. SAE Technical Paper Series. doi:10.4271/2003-01-0560
[-]