- -

Study of the influence of emission control strategies on the soot content and fuel dilution in engine oil

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of the influence of emission control strategies on the soot content and fuel dilution in engine oil

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tormos, B. es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author Gómez-Soriano, Josep es_ES
dc.contributor.author García-Barberá, Antonio es_ES
dc.contributor.author Tsuji, Naohide es_ES
dc.contributor.author Uehara, Isshoh es_ES
dc.contributor.author Alonso, Marcos es_ES
dc.date.accessioned 2021-01-28T04:31:35Z
dc.date.available 2021-01-28T04:31:35Z
dc.date.issued 2019-08 es_ES
dc.identifier.issn 0301-679X es_ES
dc.identifier.uri http://hdl.handle.net/10251/160076
dc.description.abstract [EN] The engine oil contamination by both particulate matter (PM) and fuel is becoming an important problem since strategies to control pollutant emissions in internal combustion engines (ICE) significantly increase their presence in engine oil. As a consequence, the engine oil loses its tribological properties compromising engine lubrication and leading to potential problems in engine such as wear, corrosion, etc. For that reason, the study of the oil degradation and contamination due to these strategies have a special interest to the engine manufacturers and engine oil formulators. In this paper, the engine oil soot content and fuel dilution is analysed under real engine conditions. The study is addressed from two different but complementary points of views. First, on-line measurements at several engine operating conditions are performed in order to further understand how the soot generation correlates with the oil soot content and other derived problems on oil performance. Then, experimental data available after the experimental campaign is used to calibrate a numerical model, based on Computational Fluid Dynamics (CFD), that estimate the amount of soot particles settled in the engine oil. Results show that soot particles are more present in oil when operating high load-speed conditions and during the Diesel Particulate Filter (DPF) regeneration cycles. Regarding the fuel dilution, delayed post-injections are critical since they significantly increase the amount of fuel in the engine oil. Numerical results also show the relationships between the soot particles generated during combustion and the amount of soot in engine oil, giving an enhanced comprehension of soot-in-oil deposition mechanisms. es_ES
dc.description.sponsorship A. Garcia-Barbera is partially supported through the Programa Nacional de Formation de Recursos Humanos de Investigacion of Spanish Ministerio de Ciencia e Innovation [grant number BES-2016-078073]. The authors also wish to thank Dr. José M. Pastor for his inestimable assistance in the CFD model implementation and data post-processing. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Tribology International es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject ICE emissions es_ES
dc.subject Soot in oil es_ES
dc.subject Oil fuel dilution es_ES
dc.subject Oil analysis es_ES
dc.subject Control strategies es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Study of the influence of emission control strategies on the soot content and fuel dilution in engine oil es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.triboint.2019.03.066 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-078073/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Tormos, B.; Novella Rosa, R.; Gómez-Soriano, J.; García-Barberá, A.; Tsuji, N.; Uehara, I.; Alonso, M. (2019). Study of the influence of emission control strategies on the soot content and fuel dilution in engine oil. Tribology International. 136:285-298. https://doi.org/10.1016/j.triboint.2019.03.066 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.triboint.2019.03.066 es_ES
dc.description.upvformatpinicio 285 es_ES
dc.description.upvformatpfin 298 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 136 es_ES
dc.relation.pasarela S\387916 es_ES
dc.contributor.funder Nissan Motor Ibérica S.A. es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Lloyd, A. C., & Cackette, T. A. (2001). Diesel Engines: Environmental Impact and Control. Journal of the Air & Waste Management Association, 51(6), 809-847. doi:10.1080/10473289.2001.10464315 es_ES
dc.description.references Fiebig, M., Wiartalla, A., Holderbaum, B., & Kiesow, S. (2014). Particulate emissions from diesel engines: correlation between engine technology and emissions. Journal of Occupational Medicine and Toxicology, 9(1), 6. doi:10.1186/1745-6673-9-6 es_ES
dc.description.references C. Directive, 91/441/EEC of 26 June 1991 amending Directive 70/220, EEC on the approximation of the laws of the Member States relating to measures to be taken against air pollution by emissions from motor vehicles. es_ES
dc.description.references E. Regulation, Regulation (EC) No 595/2009 of the European Parliament and of the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (Euro VI) and on access to vehicle repair and maintenance information and amending Regulation (EC) No 715/2007 and Directive 2007/46/EC and repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC, Off J Eur Communities - Legislation 188. es_ES
dc.description.references Agarwal, D., Singh, S. K., & Agarwal, A. K. (2011). Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine. Applied Energy, 88(8), 2900-2907. doi:10.1016/j.apenergy.2011.01.066 es_ES
dc.description.references Divekar, P. S., Chen, X., Tjong, J., & Zheng, M. (2016). Energy efficiency impact of EGR on organizing clean combustion in diesel engines. Energy Conversion and Management, 112, 369-381. doi:10.1016/j.enconman.2016.01.042 es_ES
dc.description.references Lattimore, T., Wang, C., Xu, H., Wyszynski, M. L., & Shuai, S. (2016). Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine. Applied Energy, 161, 256-267. doi:10.1016/j.apenergy.2015.09.080 es_ES
dc.description.references Li, X., Xu, Z., Guan, C., & Huang, Z. (2014). Impact of exhaust gas recirculation (EGR) on soot reactivity from a diesel engine operating at high load. Applied Thermal Engineering, 68(1-2), 100-106. doi:10.1016/j.applthermaleng.2014.04.029 es_ES
dc.description.references Singh, S. K., Agarwal, A. K., & Sharma, M. (2006). Experimental investigations of heavy metal addition in lubricating oil and soot deposition in an EGR operated engine. Applied Thermal Engineering, 26(2-3), 259-266. doi:10.1016/j.applthermaleng.2005.05.004 es_ES
dc.description.references George, S., Balla, S., & Gautam, M. (2007). Effect of diesel soot contaminated oil on engine wear. Wear, 262(9-10), 1113-1122. doi:10.1016/j.wear.2006.11.002 es_ES
dc.description.references Fang, J., Meng, Z., Li, J., Pu, Y., Du, Y., Li, J., … G. Chase, G. (2017). The influence of ash on soot deposition and regeneration processes in diesel particular filter. Applied Thermal Engineering, 124, 633-640. doi:10.1016/j.applthermaleng.2017.06.076 es_ES
dc.description.references Behn, A., Feindt, M., Matz, G., Krause, S., & Gohl, M. (2015). Fuel Transport across the Piston Ring Pack: Measurement System Development and Experiments for Online Fuel Transport and Oil Dilution Measurements. SAE Technical Paper Series. doi:10.4271/2015-24-2535 es_ES
dc.description.references Aldajah, S., Ajayi, O. O., Fenske, G. R., & Goldblatt, I. L. (2007). Effect of exhaust gas recirculation (EGR) contamination of diesel engine oil on wear. Wear, 263(1-6), 93-98. doi:10.1016/j.wear.2006.12.055 es_ES
dc.description.references Dennis, A. J., Garner, C. P., & Taylor, D. H. C. (1999). The Effect of EGR on Diesel Engine Wear. SAE Technical Paper Series. doi:10.4271/1999-01-0839 es_ES
dc.description.references Heredia-Cancino, J. A., Ramezani, M., & Álvarez-Ramos, M. E. (2018). Effect of degradation on tribological performance of engine lubricants at elevated temperatures. Tribology International, 124, 230-237. doi:10.1016/j.triboint.2018.04.015 es_ES
dc.description.references Mc Geehan, J. A., Alexander, W., Ziemer, J. N., Roby, S. H., & Graham, J. P. (1999). The Pivotal Role of Crankcase Oil in Preventing Soot Wear and Extending Filter Life in Low Emission Diesel Engines. SAE Technical Paper Series. doi:10.4271/1999-01-1525 es_ES
dc.description.references Motamen Salehi, F., Morina, A., & Neville, A. (2017). The effect of soot and diesel contamination on wear and friction of engine oil pump. Tribology International, 115, 285-296. doi:10.1016/j.triboint.2017.05.041 es_ES
dc.description.references Lenk, J.-R., Meyer, L., & Provase, I. S. (2014). Oil Dilution Model for Combustion Engines - Detection of Fuel Accumulation and Evaporation. SAE Technical Paper Series. doi:10.4271/2014-36-0170 es_ES
dc.description.references Gautam, M., Chitoor, K., Durbha, M., & Summers, J. C. (1999). Effect of diesel soot contaminated oil on engine wear — investigation of novel oil formulations. Tribology International, 32(12), 687-699. doi:10.1016/s0301-679x(99)00081-x es_ES
dc.description.references Wattrus, M. (2013). Fuel Property Effects on Oil Dilution in Diesel Engines. SAE International Journal of Fuels and Lubricants, 6(3), 794-806. doi:10.4271/2013-01-2680 es_ES
dc.description.references Andreae, M., Fang, H., & Bhandary, K. (2007). Biodiesel and Fuel Dilution of Engine Oil. SAE Technical Paper Series. doi:10.4271/2007-01-4036 es_ES
dc.description.references Antusch, S., Dienwiebel, M., Nold, E., Albers, P., Spicher, U., & Scherge, M. (2010). On the tribochemical action of engine soot. Wear, 269(1-2), 1-12. doi:10.1016/j.wear.2010.02.028 es_ES
dc.description.references Sato, H., Tokuoka, N., Yamamoto, H., & Sasaki, M. (1999). Study on Wear Mechanism by Soot Contaminated in Engine Oil (First Report: Relation Between Characteristics of Used Oil and Wear). SAE Technical Paper Series. doi:10.4271/1999-01-3573 es_ES
dc.description.references Green, D. A., Lewis, R., & Dwyer-Joyce, R. S. (2006). Wear effects and mechanisms of soot-contaminated automotive lubricants. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 220(3), 159-169. doi:10.1243/13506501jet140 es_ES
dc.description.references Tang, Z., Feng, Z., Jin, P., Fu, X., & Chen, H. (2017). The soot handling ability requirements and how to solve soot related viscosity increases of heavy duty diesel engine oil. Industrial Lubrication and Tribology, 69(5), 683-689. doi:10.1108/ilt-02-2015-0024 es_ES
dc.description.references George, S., Balla, S., Gautam, V., & Gautam, M. (2007). Effect of diesel soot on lubricant oil viscosity. Tribology International, 40(5), 809-818. doi:10.1016/j.triboint.2006.08.002 es_ES
dc.description.references Ryason, P. R., Chan, I. Y., & Gilmore, J. T. (1990). Polishing wear by soot. Wear, 137(1), 15-24. doi:10.1016/0043-1648(90)90014-2 es_ES
dc.description.references Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106 es_ES
dc.description.references Broatch, A., Novella, R., García-Tíscar, J., & Gomez-Soriano, J. (2019). On the shift of acoustic characteristics of compression-ignited engines when operating with gasoline partially premixed combustion. Applied Thermal Engineering, 146, 223-231. doi:10.1016/j.applthermaleng.2018.09.089 es_ES
dc.description.references Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 es_ES
dc.description.references Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 es_ES
dc.description.references Zhu, X., Zhong, C., & Zhe, J. (2017). Lubricating oil conditioning sensors for online machine health monitoring – A review. Tribology International, 109, 473-484. doi:10.1016/j.triboint.2017.01.015 es_ES
dc.description.references Bredin, A., Larcher, A. V., & Mullins, B. J. (2011). Thermogravimetric analysis of carbon black and engine soot—Towards a more robust oil analysis method. Tribology International, 44(12), 1642-1650. doi:10.1016/j.triboint.2011.06.002 es_ES
dc.description.references Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081 es_ES
dc.description.references Broatch, A., Novella, R., García-Tíscar, J., & Gomez-Soriano, J. (2018). Potential of dual spray injectors for optimising the noise emission of gasoline partially premixed combustion in a 2-stroke HSDI CI engine. Applied Thermal Engineering, 134, 369-378. doi:10.1016/j.applthermaleng.2018.01.108 es_ES
dc.description.references Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452 es_ES
dc.description.references Angelberger, C., Poinsot, T., & Delhay, B. (1997). Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations. SAE Technical Paper Series. doi:10.4271/972881 es_ES
dc.description.references Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9 es_ES
dc.description.references Colin, O., & Benkenida, A. (2004). The 3-Zones Extended Coherent Flame Model (Ecfm3z) for Computing Premixed/Diffusion Combustion. Oil & Gas Science and Technology, 59(6), 593-609. doi:10.2516/ogst:2004043 es_ES
dc.description.references K. Huh, A phenomenological model of diesel spray atomization, Proc. of the international conf. on multiphase flows' 91-tsukuba. es_ES
dc.description.references Reitz, R. D., & Diwakar, R. (1987). Structure of High-Pressure Fuel Sprays. SAE Technical Paper Series. doi:10.4271/870598 es_ES
dc.description.references Habchi, C., Lafossas, F. A., Béard, P., & Broseta, D. (2004). Formulation of a One-Component Fuel Lumping Model to Assess the Effects of Fuel Thermodynamic Properties on Internal Combustion Engine Mixture Preparation and Combustion. SAE Technical Paper Series. doi:10.4271/2004-01-1996 es_ES
dc.description.references Karlsson, A., Magnusson, I., Balthasar, M., & Mauss, F. (1998). Simulation of Soot Formation Under Diesel Engine Conditions Using a Detailed Kinetic Soot Model. SAE Technical Paper Series. doi:10.4271/981022 es_ES
dc.description.references Hiroyasu, H., & Kadota, T. (1976). Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines. SAE Technical Paper Series. doi:10.4271/760129 es_ES
dc.description.references Wiedenhoefer, J. F., & Reitz, R. D. (2003). Multidimensional Modeling of the Effects of Radiation and Soot Deposition in Heavy-duty Diesel Engines. SAE Technical Paper Series. doi:10.4271/2003-01-0560 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem