- -

Numerical analysis of the influence of micro-voids on fretting fatigue crack initiation lifetime

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical analysis of the influence of micro-voids on fretting fatigue crack initiation lifetime

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Infante-García, Diego es_ES
dc.contributor.author Giner Maravilla, Eugenio es_ES
dc.contributor.author Miguélez, María Henar es_ES
dc.contributor.author Wahab, Magd Abdel es_ES
dc.date.accessioned 2021-01-28T04:31:47Z
dc.date.available 2021-01-28T04:31:47Z
dc.date.issued 2019-07 es_ES
dc.identifier.issn 0301-679X es_ES
dc.identifier.uri http://hdl.handle.net/10251/160080
dc.description.abstract [EN] In this paper, the influence of the heterogeneity in the predicted crack initiation lifetime under fretting fatigue conditions is analysed for a regular and a random distribution of micro-voids. A critical plane analysis with two multiaxial damage criteria is performed to assess the crack initiation lifetime. The predicted initiation lifetime in the heterogeneous material is compared with the results obtained in the homogeneous case. The numerical results show that the heterogeneity has a noticeable influence on the predicted initiation lifetime. Furthermore, the numerical model suggests that a crack may firstly initiate at the upper edge of the micro-voids located close to the contact edge, leading to a mean reduction of the predicted crack initiation lifetime. However, in some cases, the introduction of micro-voids reduces the stress intensity at the contact edge and thus decreasing the predicted crack initiation lifetime. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support given by the Spanish Ministry of Economy and Competitiveness and the FEDER program through the projects DPI2017-89197-C2-1-R, DPI2017-89197-C2-2-R and the FPI subprogram with the reference BES-2015-072070. The support of the Generalitat Valenciana, Programme PROMETEO 2016/007, is also acknowledged.r The last author would like to acknowledge the financial support of the Research Foundation-Flanders (FWO), The Luxembourg National Research Fund (FNR) and Slovenian Research Agency (ARRS) in the framework of the FWO Lead Agency project: G018916N 'Multi-analysis of fretting fatigue using physical and virtual experiments'. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Tribology International es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Heterogeneous material es_ES
dc.subject Fretting fatigue es_ES
dc.subject Finite element method es_ES
dc.subject Prediction crack initiation es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Numerical analysis of the influence of micro-voids on fretting fatigue crack initiation lifetime es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.triboint.2019.02.032 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-072070/ES/BES-2015-072070/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-1-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FWO//G.0189.16N/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Infante-García, D.; Giner Maravilla, E.; Miguélez, MH.; Wahab, MA. (2019). Numerical analysis of the influence of micro-voids on fretting fatigue crack initiation lifetime. Tribology International. 135:121-129. https://doi.org/10.1016/j.triboint.2019.02.032 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.triboint.2019.02.032 es_ES
dc.description.upvformatpinicio 121 es_ES
dc.description.upvformatpfin 129 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 135 es_ES
dc.relation.pasarela S\391551 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fonds National de la Recherche Luxembourg es_ES
dc.contributor.funder Research Foundation Flanders es_ES
dc.contributor.funder Slovenian Research Agency es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Hills, D. A., & Nowell, D. (2014). Mechanics of fretting fatigue—Oxford’s contribution. Tribology International, 76, 1-5. doi:10.1016/j.triboint.2013.09.015 es_ES
dc.description.references Hojjati-Talemi, R., Wahab, M. A., Giner, E., & Sabsabi, M. (2013). Numerical Estimation of Fretting Fatigue Lifetime Using Damage and Fracture Mechanics. Tribology Letters, 52(1), 11-25. doi:10.1007/s11249-013-0189-8 es_ES
dc.description.references Nowell, D., Dini, D., & Hills, D. A. (2006). Recent developments in the understanding of fretting fatigue. Engineering Fracture Mechanics, 73(2), 207-222. doi:10.1016/j.engfracmech.2005.01.013 es_ES
dc.description.references Amargier, R., Fouvry, S., Chambon, L., Schwob, C., & Poupon, C. (2010). Stress gradient effect on crack initiation in fretting using a multiaxial fatigue framework. International Journal of Fatigue, 32(12), 1904-1912. doi:10.1016/j.ijfatigue.2010.06.004 es_ES
dc.description.references PROUDHON, H., FOUVRY, S., & BUFFIERE, J. (2005). A fretting crack initiation prediction taking into account the surface roughness and the crack nucleation process volume. International Journal of Fatigue, 27(5), 569-579. doi:10.1016/j.ijfatigue.2004.09.001 es_ES
dc.description.references Pereira, K., & Abdel Wahab, M. (2017). Fretting fatigue crack propagation lifetime prediction in cylindrical contact using an extended MTS criterion for non-proportional loading. Tribology International, 115, 525-534. doi:10.1016/j.triboint.2017.06.026 es_ES
dc.description.references Hojjati-Talemi, R., Abdel Wahab, M., De Pauw, J., & De Baets, P. (2014). Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration. Tribology International, 76, 73-91. doi:10.1016/j.triboint.2014.02.017 es_ES
dc.description.references Noraphaiphipaksa, N., Manonukul, A., & Kanchanomai, C. (2017). Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life. Materials, 10(2), 155. doi:10.3390/ma10020155 es_ES
dc.description.references NAVARRO, C., MUNOZ, S., & DOMINGUEZ, J. (2008). On the use of multiaxial fatigue criteria for fretting fatigue life assessment. International Journal of Fatigue, 30(1), 32-44. doi:10.1016/j.ijfatigue.2007.02.018 es_ES
dc.description.references Bhatti, N. A., & Abdel Wahab, M. (2017). A numerical investigation on critical plane orientation and initiation lifetimes in fretting fatigue under out of phase loading conditions. Tribology International, 115, 307-318. doi:10.1016/j.triboint.2017.05.036 es_ES
dc.description.references Sabsabi, M., Giner, E., & Fuenmayor, F. J. (2011). Experimental fatigue testing of a fretting complete contact and numerical life correlation using X-FEM. International Journal of Fatigue, 33(6), 811-822. doi:10.1016/j.ijfatigue.2010.12.012 es_ES
dc.description.references Szolwinski, M. P., & Farris, T. N. (1998). Observation, analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy. Wear, 221(1), 24-36. doi:10.1016/s0043-1648(98)00264-6 es_ES
dc.description.references Gong, H., Rafi, K., Gu, H., Starr, T., & Stucker, B. (2014). Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 1-4, 87-98. doi:10.1016/j.addma.2014.08.002 es_ES
dc.description.references RAJASEKARAN, B., GANESHSUNDARARAMAN, S., JOSHI, S., & SUNDARARAJAN, G. (2009). Effect of grinding on plain fatigue and fretting fatigue behaviour of detonation gun sprayed Cu–Ni–In coating on Al–Mg–Si alloy. International Journal of Fatigue, 31(4), 791-796. doi:10.1016/j.ijfatigue.2008.03.003 es_ES
dc.description.references Chan, L. C., Lu, X. Z., & Yu, K. M. (2015). Multiscale approach with RSM for stress–strain behaviour prediction of micro-void-considered metal alloy. Materials & Design, 83, 129-137. doi:10.1016/j.matdes.2015.05.064 es_ES
dc.description.references Bhatti, N. A., & Abdel Wahab, M. (2018). Fretting fatigue crack nucleation: A review. Tribology International, 121, 121-138. doi:10.1016/j.triboint.2018.01.029 es_ES
dc.description.references Marco, M., Infante-García, D., Díaz-Álvarez, J., & Giner, E. (2019). Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue. Tribology International, 131, 343-352. doi:10.1016/j.triboint.2018.10.048 es_ES
dc.description.references Muñoz, S., Navarro, C., & Domínguez, J. (2007). Application of fracture mechanics to estimate fretting fatigue endurance curves. Engineering Fracture Mechanics, 74(14), 2168-2186. doi:10.1016/j.engfracmech.2006.10.010 es_ES
dc.description.references Giner, E., Sabsabi, M., Ródenas, J. J., & Javier Fuenmayor, F. (2014). Direction of crack propagation in a complete contact fretting-fatigue problem. International Journal of Fatigue, 58, 172-180. doi:10.1016/j.ijfatigue.2013.03.001 es_ES
dc.description.references Kumar, D., Biswas, R., Poh, L. H., & Wahab, M. A. (2017). Fretting fatigue stress analysis in heterogeneous material using direct numerical simulations in solid mechanics. Tribology International, 109, 124-132. doi:10.1016/j.triboint.2016.12.033 es_ES
dc.description.references Mayer, H., Papakyriacou, M., Zettl, B., & Stanzl-Tschegg, S. . (2003). Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. International Journal of Fatigue, 25(3), 245-256. doi:10.1016/s0142-1123(02)00054-3 es_ES
dc.description.references Taylor, D. (2008). The theory of critical distances. Engineering Fracture Mechanics, 75(7), 1696-1705. doi:10.1016/j.engfracmech.2007.04.007 es_ES
dc.description.references Araújo, J. (2002). The effect of rapidly varying contact stress fields on fretting fatigue. International Journal of Fatigue, 24(7), 763-775. doi:10.1016/s0142-1123(01)00191-8 es_ES
dc.description.references McDiarmid, D. L. (1991). A GENERAL CRITERION FOR HIGH CYCLE MULTIAXIAL FATIGUE FAILURE. Fatigue & Fracture of Engineering Materials and Structures, 14(4), 429-453. doi:10.1111/j.1460-2695.1991.tb00673.x es_ES
dc.description.references Socie, D. (1987). Multiaxial Fatigue Damage Models. Journal of Engineering Materials and Technology, 109(4), 293-298. doi:10.1115/1.3225980 es_ES
dc.description.references Gates, N., & Fatemi, A. (2016). Multiaxial variable amplitude fatigue life analysis including notch effects. International Journal of Fatigue, 91, 337-351. doi:10.1016/j.ijfatigue.2015.12.011 es_ES
dc.description.references El Haddad, M. H., Dowling, N. E., Topper, T. H., & Smith, K. N. (1980). J integral applications for short fatigue cracks at notches. International Journal of Fracture, 16(1), 15-30. doi:10.1007/bf00042383 es_ES
dc.description.references Kim, J., Gao, X., & Srivatsan, T. S. (2004). Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Engineering Fracture Mechanics, 71(3), 379-400. doi:10.1016/s0013-7944(03)00114-0 es_ES
dc.description.references Fatemi, A., & Socie, D. F. (1988). A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT-OF-PHASE LOADING. Fatigue & Fracture of Engineering Materials and Structures, 11(3), 149-165. doi:10.1111/j.1460-2695.1988.tb01169.x es_ES
dc.description.references Lykins, C. (2001). Combined experimental–numerical investigation of fretting fatigue crack initiation. International Journal of Fatigue, 23(8), 703-711. doi:10.1016/s0142-1123(01)00029-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem