- -

Numerical analysis of the influence of micro-voids on fretting fatigue crack initiation lifetime

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical analysis of the influence of micro-voids on fretting fatigue crack initiation lifetime

Mostrar el registro completo del ítem

Infante-García, D.; Giner Maravilla, E.; Miguélez, MH.; Wahab, MA. (2019). Numerical analysis of the influence of micro-voids on fretting fatigue crack initiation lifetime. Tribology International. 135:121-129. https://doi.org/10.1016/j.triboint.2019.02.032

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160080

Ficheros en el ítem

Metadatos del ítem

Título: Numerical analysis of the influence of micro-voids on fretting fatigue crack initiation lifetime
Autor: Infante-García, Diego Giner Maravilla, Eugenio Miguélez, María Henar Wahab, Magd Abdel
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] In this paper, the influence of the heterogeneity in the predicted crack initiation lifetime under fretting fatigue conditions is analysed for a regular and a random distribution of micro-voids. A critical plane ...[+]
Palabras clave: Heterogeneous material , Fretting fatigue , Finite element method , Prediction crack initiation
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Tribology International. (issn: 0301-679X )
DOI: 10.1016/j.triboint.2019.02.032
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.triboint.2019.02.032
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BES-2015-072070/ES/BES-2015-072070/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-1-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/
info:eu-repo/grantAgreement/FWO//G.0189.16N/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
Agradecimientos:
The authors gratefully acknowledge the financial support given by the Spanish Ministry of Economy and Competitiveness and the FEDER program through the projects DPI2017-89197-C2-1-R, DPI2017-89197-C2-2-R and the FPI ...[+]
Tipo: Artículo

References

Hills, D. A., & Nowell, D. (2014). Mechanics of fretting fatigue—Oxford’s contribution. Tribology International, 76, 1-5. doi:10.1016/j.triboint.2013.09.015

Hojjati-Talemi, R., Wahab, M. A., Giner, E., & Sabsabi, M. (2013). Numerical Estimation of Fretting Fatigue Lifetime Using Damage and Fracture Mechanics. Tribology Letters, 52(1), 11-25. doi:10.1007/s11249-013-0189-8

Nowell, D., Dini, D., & Hills, D. A. (2006). Recent developments in the understanding of fretting fatigue. Engineering Fracture Mechanics, 73(2), 207-222. doi:10.1016/j.engfracmech.2005.01.013 [+]
Hills, D. A., & Nowell, D. (2014). Mechanics of fretting fatigue—Oxford’s contribution. Tribology International, 76, 1-5. doi:10.1016/j.triboint.2013.09.015

Hojjati-Talemi, R., Wahab, M. A., Giner, E., & Sabsabi, M. (2013). Numerical Estimation of Fretting Fatigue Lifetime Using Damage and Fracture Mechanics. Tribology Letters, 52(1), 11-25. doi:10.1007/s11249-013-0189-8

Nowell, D., Dini, D., & Hills, D. A. (2006). Recent developments in the understanding of fretting fatigue. Engineering Fracture Mechanics, 73(2), 207-222. doi:10.1016/j.engfracmech.2005.01.013

Amargier, R., Fouvry, S., Chambon, L., Schwob, C., & Poupon, C. (2010). Stress gradient effect on crack initiation in fretting using a multiaxial fatigue framework. International Journal of Fatigue, 32(12), 1904-1912. doi:10.1016/j.ijfatigue.2010.06.004

PROUDHON, H., FOUVRY, S., & BUFFIERE, J. (2005). A fretting crack initiation prediction taking into account the surface roughness and the crack nucleation process volume. International Journal of Fatigue, 27(5), 569-579. doi:10.1016/j.ijfatigue.2004.09.001

Pereira, K., & Abdel Wahab, M. (2017). Fretting fatigue crack propagation lifetime prediction in cylindrical contact using an extended MTS criterion for non-proportional loading. Tribology International, 115, 525-534. doi:10.1016/j.triboint.2017.06.026

Hojjati-Talemi, R., Abdel Wahab, M., De Pauw, J., & De Baets, P. (2014). Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration. Tribology International, 76, 73-91. doi:10.1016/j.triboint.2014.02.017

Noraphaiphipaksa, N., Manonukul, A., & Kanchanomai, C. (2017). Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life. Materials, 10(2), 155. doi:10.3390/ma10020155

NAVARRO, C., MUNOZ, S., & DOMINGUEZ, J. (2008). On the use of multiaxial fatigue criteria for fretting fatigue life assessment. International Journal of Fatigue, 30(1), 32-44. doi:10.1016/j.ijfatigue.2007.02.018

Bhatti, N. A., & Abdel Wahab, M. (2017). A numerical investigation on critical plane orientation and initiation lifetimes in fretting fatigue under out of phase loading conditions. Tribology International, 115, 307-318. doi:10.1016/j.triboint.2017.05.036

Sabsabi, M., Giner, E., & Fuenmayor, F. J. (2011). Experimental fatigue testing of a fretting complete contact and numerical life correlation using X-FEM. International Journal of Fatigue, 33(6), 811-822. doi:10.1016/j.ijfatigue.2010.12.012

Szolwinski, M. P., & Farris, T. N. (1998). Observation, analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy. Wear, 221(1), 24-36. doi:10.1016/s0043-1648(98)00264-6

Gong, H., Rafi, K., Gu, H., Starr, T., & Stucker, B. (2014). Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 1-4, 87-98. doi:10.1016/j.addma.2014.08.002

RAJASEKARAN, B., GANESHSUNDARARAMAN, S., JOSHI, S., & SUNDARARAJAN, G. (2009). Effect of grinding on plain fatigue and fretting fatigue behaviour of detonation gun sprayed Cu–Ni–In coating on Al–Mg–Si alloy. International Journal of Fatigue, 31(4), 791-796. doi:10.1016/j.ijfatigue.2008.03.003

Chan, L. C., Lu, X. Z., & Yu, K. M. (2015). Multiscale approach with RSM for stress–strain behaviour prediction of micro-void-considered metal alloy. Materials & Design, 83, 129-137. doi:10.1016/j.matdes.2015.05.064

Bhatti, N. A., & Abdel Wahab, M. (2018). Fretting fatigue crack nucleation: A review. Tribology International, 121, 121-138. doi:10.1016/j.triboint.2018.01.029

Marco, M., Infante-García, D., Díaz-Álvarez, J., & Giner, E. (2019). Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue. Tribology International, 131, 343-352. doi:10.1016/j.triboint.2018.10.048

Muñoz, S., Navarro, C., & Domínguez, J. (2007). Application of fracture mechanics to estimate fretting fatigue endurance curves. Engineering Fracture Mechanics, 74(14), 2168-2186. doi:10.1016/j.engfracmech.2006.10.010

Giner, E., Sabsabi, M., Ródenas, J. J., & Javier Fuenmayor, F. (2014). Direction of crack propagation in a complete contact fretting-fatigue problem. International Journal of Fatigue, 58, 172-180. doi:10.1016/j.ijfatigue.2013.03.001

Kumar, D., Biswas, R., Poh, L. H., & Wahab, M. A. (2017). Fretting fatigue stress analysis in heterogeneous material using direct numerical simulations in solid mechanics. Tribology International, 109, 124-132. doi:10.1016/j.triboint.2016.12.033

Mayer, H., Papakyriacou, M., Zettl, B., & Stanzl-Tschegg, S. . (2003). Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. International Journal of Fatigue, 25(3), 245-256. doi:10.1016/s0142-1123(02)00054-3

Taylor, D. (2008). The theory of critical distances. Engineering Fracture Mechanics, 75(7), 1696-1705. doi:10.1016/j.engfracmech.2007.04.007

Araújo, J. (2002). The effect of rapidly varying contact stress fields on fretting fatigue. International Journal of Fatigue, 24(7), 763-775. doi:10.1016/s0142-1123(01)00191-8

McDiarmid, D. L. (1991). A GENERAL CRITERION FOR HIGH CYCLE MULTIAXIAL FATIGUE FAILURE. Fatigue & Fracture of Engineering Materials and Structures, 14(4), 429-453. doi:10.1111/j.1460-2695.1991.tb00673.x

Socie, D. (1987). Multiaxial Fatigue Damage Models. Journal of Engineering Materials and Technology, 109(4), 293-298. doi:10.1115/1.3225980

Gates, N., & Fatemi, A. (2016). Multiaxial variable amplitude fatigue life analysis including notch effects. International Journal of Fatigue, 91, 337-351. doi:10.1016/j.ijfatigue.2015.12.011

El Haddad, M. H., Dowling, N. E., Topper, T. H., & Smith, K. N. (1980). J integral applications for short fatigue cracks at notches. International Journal of Fracture, 16(1), 15-30. doi:10.1007/bf00042383

Kim, J., Gao, X., & Srivatsan, T. S. (2004). Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Engineering Fracture Mechanics, 71(3), 379-400. doi:10.1016/s0013-7944(03)00114-0

Fatemi, A., & Socie, D. F. (1988). A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT-OF-PHASE LOADING. Fatigue & Fracture of Engineering Materials and Structures, 11(3), 149-165. doi:10.1111/j.1460-2695.1988.tb01169.x

Lykins, C. (2001). Combined experimental–numerical investigation of fretting fatigue crack initiation. International Journal of Fatigue, 23(8), 703-711. doi:10.1016/s0142-1123(01)00029-9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem