- -

Operators on the Fréchet sequence space ces(p+), $1 \leq p < \infty$

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Operators on the Fréchet sequence space ces(p+), $1 \leq p < \infty$

Mostrar el registro completo del ítem

Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2019). Operators on the Fréchet sequence space ces(p+), $1 \leq p < \infty$. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(2):1533-1556. https://doi.org/10.1007/s13398-018-0564-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160090

Ficheros en el ítem

Metadatos del ítem

Título: Operators on the Fréchet sequence space ces(p+), $1 \leq p < \infty$
Autor: Albanese, Angela A. Bonet Solves, José Antonio Ricker, Werner J.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The Fréchet sequence spaces ces(p+) are very different to the Fréchet sequence spaces ¿p+,1¿p<¿, that generate them, (Albanese et al. in J Math Anal Appl 458:1314¿1323, 2018). The aim of this paper is to investigate ...[+]
Palabras clave: Fréchet space , Sequence space ces(p+) , Spectrum , Multiplier operator , Cesàro operator , Mean ergodic operator
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-018-0564-2
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13398-018-0564-2
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/
Agradecimientos:
The research of the first two authors was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102 (Spain). The authors are thankful to the referees for their careful reading of the manuscript and their ...[+]
Tipo: Artículo

References

Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)

Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ ℓ p + and $$L^{p-}$$ L p - . Glasgow Math. J. 59, 273–287 (2017)

Albanese, A.A., Bonet, J., Ricker, W.J.: The Fréchet spaces $$ces(p+),1 < p < \infty,$$ c e s ( p + ) , 1 < p < ∞ , . J. Math. Anal. Appl. 458, 1314–1323 (2018) [+]
Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)

Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ ℓ p + and $$L^{p-}$$ L p - . Glasgow Math. J. 59, 273–287 (2017)

Albanese, A.A., Bonet, J., Ricker, W.J.: The Fréchet spaces $$ces(p+),1 < p < \infty,$$ c e s ( p + ) , 1 < p < ∞ , . J. Math. Anal. Appl. 458, 1314–1323 (2018)

Albanese, A.A., Bonet, J., Ricker, W.J.: Multiplier and averaging operators in the Banach spaces $$ces(p),1 < p < \infty ,$$ c e s ( p ) , 1 < p < ∞ , Positivity. https://doi.org/10.1007/s11117-018-0601-6

Bachelis, G.F., Gilbert, J.E.: Banach spaces of compact multipliers and their dual spaces. Math. Z. 125, 285–297 (1972)

Bennett, G.: Factorizing the classical inequalities, Mem. Am. Math. Soc. 120(576), viii + 130 pp (1996)

Bonet, J., Ricker, W.J.: The canonical spectral measure in Köthe echelon spaces. Integral Equ. Oper. Theory 53, 477–496 (2005)

Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of $$N$$ N -supercyclic operators. Studia Math. 165, 135–157 (2004)

Crofts, G.: Concerning perfect Fréchet spaces and diagonal transformations. Math. Ann. 182, 67–76 (1969)

Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on $$\ell ^p$$ ℓ p and $$c_0$$ c 0 . Integral Equ. Oper. Theory 80, 61–77 (2014)

Díaz, J.-C.: An example of a Fréchet space, not Montel, without infinite-dimensional normable subspaces. Proc. Am. Math. Soc. 96, 721 (1986)

Edwards, R.E.: Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York Chicago San Francisco (1965)

Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy’s Inequality. Lecture Notes in Mathematics, vol. 1679. Springer, Berlin (1998)

Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, London (1973)

Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge reprinted (1964)

Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)

Krengel, U.: Ergodic Theorems. de Gruyter Studies in Mathematics 6. Walter de Gruyter Co., Berlin (1985)

Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)

Metafune, G., Moscatelli, V.B.: On the space $$\ell ^{p+}=\cap_{q>p}\ell ^q$$ ℓ p + = ∩ q > p ℓ q . Math. Nachr. 147, 7–12 (1990)

Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North Holland, Amsterdam (1987)

Pitt, H.R.: A note on bilinear forms. J. Lond. Math. Soc. 11, 171–174 (1936)

Ricker, W.J.: A spectral mapping theorem for scalar-type spectral operators in locally convex spaces. Integral Equ. Oper. Theory 8, 276–288 (1985)

Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1973)

Waelbroeck, L.: Topological vector spaces and algebras. Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem