Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)
Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ ℓ p + and $$L^{p-}$$ L p - . Glasgow Math. J. 59, 273–287 (2017)
Albanese, A.A., Bonet, J., Ricker, W.J.: The Fréchet spaces $$ces(p+),1 < p < \infty,$$ c e s ( p + ) , 1 < p < ∞ , . J. Math. Anal. Appl. 458, 1314–1323 (2018)
[+]
Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)
Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ ℓ p + and $$L^{p-}$$ L p - . Glasgow Math. J. 59, 273–287 (2017)
Albanese, A.A., Bonet, J., Ricker, W.J.: The Fréchet spaces $$ces(p+),1 < p < \infty,$$ c e s ( p + ) , 1 < p < ∞ , . J. Math. Anal. Appl. 458, 1314–1323 (2018)
Albanese, A.A., Bonet, J., Ricker, W.J.: Multiplier and averaging operators in the Banach spaces $$ces(p),1 < p < \infty ,$$ c e s ( p ) , 1 < p < ∞ , Positivity. https://doi.org/10.1007/s11117-018-0601-6
Bachelis, G.F., Gilbert, J.E.: Banach spaces of compact multipliers and their dual spaces. Math. Z. 125, 285–297 (1972)
Bennett, G.: Factorizing the classical inequalities, Mem. Am. Math. Soc. 120(576), viii + 130 pp (1996)
Bonet, J., Ricker, W.J.: The canonical spectral measure in Köthe echelon spaces. Integral Equ. Oper. Theory 53, 477–496 (2005)
Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of $$N$$ N -supercyclic operators. Studia Math. 165, 135–157 (2004)
Crofts, G.: Concerning perfect Fréchet spaces and diagonal transformations. Math. Ann. 182, 67–76 (1969)
Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on $$\ell ^p$$ ℓ p and $$c_0$$ c 0 . Integral Equ. Oper. Theory 80, 61–77 (2014)
Díaz, J.-C.: An example of a Fréchet space, not Montel, without infinite-dimensional normable subspaces. Proc. Am. Math. Soc. 96, 721 (1986)
Edwards, R.E.: Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York Chicago San Francisco (1965)
Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy’s Inequality. Lecture Notes in Mathematics, vol. 1679. Springer, Berlin (1998)
Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, London (1973)
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge reprinted (1964)
Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)
Krengel, U.: Ergodic Theorems. de Gruyter Studies in Mathematics 6. Walter de Gruyter Co., Berlin (1985)
Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)
Metafune, G., Moscatelli, V.B.: On the space $$\ell ^{p+}=\cap_{q>p}\ell ^q$$ ℓ p + = ∩ q > p ℓ q . Math. Nachr. 147, 7–12 (1990)
Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North Holland, Amsterdam (1987)
Pitt, H.R.: A note on bilinear forms. J. Lond. Math. Soc. 11, 171–174 (1936)
Ricker, W.J.: A spectral mapping theorem for scalar-type spectral operators in locally convex spaces. Integral Equ. Oper. Theory 8, 276–288 (1985)
Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1973)
Waelbroeck, L.: Topological vector spaces and algebras. Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971)
[-]