- -

Study of samples geometry to analyze mechanical properties in Fused Deposition Modeling process (FDM)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of samples geometry to analyze mechanical properties in Fused Deposition Modeling process (FDM)

Mostrar el registro completo del ítem

Lluch-Cerezo, J.; Benavente Martínez, R.; Meseguer, M.; Gutiérrez, SC. (2019). Study of samples geometry to analyze mechanical properties in Fused Deposition Modeling process (FDM). Procedia Manufacturing. 41:890-897. https://doi.org/10.1016/j.promfg.2019.10.012

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160214

Ficheros en el ítem

Metadatos del ítem

Título: Study of samples geometry to analyze mechanical properties in Fused Deposition Modeling process (FDM)
Autor: Lluch-Cerezo, J. Benavente Martínez, Rut Meseguer, Maria-Desamparados Gutiérrez, S. C.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Parts manufactured by Fused Deposition Modeling (FDM) present anisotropic properties, which have influence in tensile test results. In this paper, test samples of Polylactide (PLA) are manufactured by FDM according ...[+]
Palabras clave: FDM , Tensile test , Geometry samples
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Procedia Manufacturing. (eissn: 2351-9789 )
DOI: 10.1016/j.promfg.2019.10.012
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.promfg.2019.10.012
Título del congreso: 8th Manufacturing Engineering Society International Conference (MESIC 2019)
Lugar del congreso: Madrid, España
Fecha congreso: Junio 19-21,2019
Tipo: Artículo Comunicación en congreso

References

Lee, J.-Y., An, J., & Chua, C. K. (2017). Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 7, 120-133. doi:10.1016/j.apmt.2017.02.004

T. Wohlers, 3D Printing and Additive Manufacturing State of the Industry, Wohlers Report 2016 Wohlers Associates, Inc., 2016.

Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 20, 44-67. doi:10.1016/j.addma.2017.12.002 [+]
Lee, J.-Y., An, J., & Chua, C. K. (2017). Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 7, 120-133. doi:10.1016/j.apmt.2017.02.004

T. Wohlers, 3D Printing and Additive Manufacturing State of the Industry, Wohlers Report 2016 Wohlers Associates, Inc., 2016.

Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 20, 44-67. doi:10.1016/j.addma.2017.12.002

Ahn, S., Montero, M., Odell, D., Roundy, S., & Wright, P. K. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 8(4), 248-257. doi:10.1108/13552540210441166

Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núñez, P. J. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124, 143-157. doi:10.1016/j.matdes.2017.03.065

Wendt, C., Valerga, A. P., Droste, O., Batista, M., & Marcos, M. (2017). FEM based evaluation of Fused Layer Modelling monolayers in tensile testing. Procedia Manufacturing, 13, 916-923. doi:10.1016/j.promfg.2017.09.160

Rodríguez-Panes, A., Claver, J., & Camacho, A. (2018). The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis. Materials, 11(8), 1333. doi:10.3390/ma11081333

Rankouhi, B., Javadpour, S., Delfanian, F., & Letcher, T. (2016). Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation. Journal of Failure Analysis and Prevention, 16(3), 467-481. doi:10.1007/s11668-016-0113-2

Z. Liu, Y. Wang, B. Wu, C. Cui, Y. Guo, C. Yan, A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts, The International Journal of Advanced Manufacturing Technology, doi.org/10.1007/s00170-019-03332-x.

Yao, T., Deng, Z., Zhang, K., & Li, S. (2019). A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Composites Part B: Engineering, 163, 393-402. doi:10.1016/j.compositesb.2019.01.025

ASTM D638-14:2014, “Standard test method for tensile properties of plastics”, ASTM International, West Conshohocken, PA, 2014.

A. Rodríguez-Panes, J. Claver, A. M. Camacho, M. A. Sebastián, Análisis normativo y evaluación geométrica de probetas para la caracterización mecánica de piezas obtenidas por fabricación aditiva mediante FDM. Actas Del XXII Congreso Nacional de Ingeniería Mecánica, (September), (2018) 1–11.

Lanzotti, A., Grasso, M., Staiano, G., & Martorelli, M. (2015). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal, 21(5), 604-617. doi:10.1108/rpj-09-2014-0135

UNE-EN ISO/ASTM 52921:2017, “Terminología normalizada para la fabricación aditiva. Sistemas de coordenadas y métodos de ensayo”, Asociación Española de Normalización y Certificación, Madrid, 2017.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem