Araj, S.-E., & Wratten, S. D. (2015). Comparing existing weeds and commonly used insectary plants as floral resources for a parasitoid. Biological Control, 81, 15-20. doi:10.1016/j.biocontrol.2014.11.003
Bell, L., Methven, L., & Wagstaff, C. (2017). The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chemistry, 222, 6-17. doi:10.1016/j.foodchem.2016.11.153
Bell, L., & Wagstaff, C. (2014). Glucosinolates, Myrosinase Hydrolysis Products, and Flavonols Found in Rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agricultural and Food Chemistry, 62(20), 4481-4492. doi:10.1021/jf501096x
[+]
Araj, S.-E., & Wratten, S. D. (2015). Comparing existing weeds and commonly used insectary plants as floral resources for a parasitoid. Biological Control, 81, 15-20. doi:10.1016/j.biocontrol.2014.11.003
Bell, L., Methven, L., & Wagstaff, C. (2017). The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chemistry, 222, 6-17. doi:10.1016/j.foodchem.2016.11.153
Bell, L., & Wagstaff, C. (2014). Glucosinolates, Myrosinase Hydrolysis Products, and Flavonols Found in Rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agricultural and Food Chemistry, 62(20), 4481-4492. doi:10.1021/jf501096x
Bianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7
Bonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300
Buitrago Acevedo, M. F., Groen, T. A., Hecker, C. A., & Skidmore, A. K. (2017). Identifying leaf traits that signal stress in TIR spectra. ISPRS Journal of Photogrammetry and Remote Sensing, 125, 132-145. doi:10.1016/j.isprsjprs.2017.01.014
Caruso, G., Parrella, G., Giorgini, M., & Nicoletti, R. (2018). Crop Systems, Quality and Protection of Diplotaxis tenuifolia. Agriculture, 8(4), 55. doi:10.3390/agriculture8040055
Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519
Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068
D’Amelia, V., Aversano, R., Ruggiero, A., Batelli, G., Appelhagen, I., Dinacci, C., … Carputo, D. (2017). Subfunctionalization of duplicate MYB genes in Solanum commersonii
generated the cold-induced ScAN2
and the anthocyanin regulator ScAN1. Plant, Cell & Environment, 41(5), 1038-1051. doi:10.1111/pce.12966
D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019
D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507
Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022
Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020
Egea-Gilabert, C., Niñirola, D., Conesa, E., Candela, M. E., & Fernández, J. A. (2013). Agronomical use as baby leaf salad of Silene vulgaris based on morphological, biochemical and molecular traits. Scientia Horticulturae, 152, 35-43. doi:10.1016/j.scienta.2013.01.018
Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051
Figàs, M. R., Prohens, J., Casanova, C., Fernández-de-Córdova, P., & Soler, S. (2018). Variation of morphological descriptors for the evaluation of tomato germplasm and their stability across different growing conditions. Scientia Horticulturae, 238, 107-115. doi:10.1016/j.scienta.2018.04.039
Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774
Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. doi:10.1016/j.wace.2015.08.001
Martínez-Laborde, J. B., Pita-Villamil, J. M., & Pérez-García, F. (2007). Short communication. Secondary dormancy in Diplotaxis erucoides: a possible adaptative strategy as an annual weed. Spanish Journal of Agricultural Research, 5(3), 402. doi:10.5424/sjar/2007053-265
Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468
Rodríguez-Burruezo, A., Prohens, J., & Nuez, F. (2002). Genetic Analysis of Quantitative Traits in Pepino (Solanum muricatum) in Two Growing Seasons. Journal of the American Society for Horticultural Science, 127(2), 271-278. doi:10.21273/jashs.127.2.271
Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2015). Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. Journal of Food Science and Technology, 53(1), 721-729. doi:10.1007/s13197-015-2030-x
Stagnari, F., Di Mattia, C., Galieni, A., Santarelli, V., D’Egidio, S., Pagnani, G., & Pisante, M. (2018). Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil. Industrial Crops and Products, 122, 277-289. doi:10.1016/j.indcrop.2018.05.073
Stommel, J. R., Whitaker, B. D., Haynes, K. G., & Prohens, J. (2015). Genotype × environment interactions in eggplant for fruit phenolic acid content. Euphytica, 205(3), 823-836. doi:10.1007/s10681-015-1415-2
Taranto, F., Francese, G., Di Dato, F., D’Alessandro, A., Greco, B., Onofaro Sanajà, V., … Tripodi, P. (2016). Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Journal of Agricultural and Food Chemistry, 64(29), 5824-5836. doi:10.1021/acs.jafc.6b01737
Voss-Fels, K., & Snowdon, R. J. (2015). Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnology Journal, 14(4), 1086-1094. doi:10.1111/pbi.12456
[-]