- -

Factorization through Lorentz spaces for operators acting in Banach function spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Factorization through Lorentz spaces for operators acting in Banach function spaces

Show full item record

Sánchez Pérez, EA. (2019). Factorization through Lorentz spaces for operators acting in Banach function spaces. Positivity. 23(1):75-88. https://doi.org/10.1007/s11117-018-0593-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160296

Files in this item

Item Metadata

Title: Factorization through Lorentz spaces for operators acting in Banach function spaces
Author: Sánchez Pérez, Enrique Alfonso
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] We show a factorization through Lorentz spaces for Banach-space-valued operators defined in Banach function spaces. Although our results are inspired in the classical factorization theorem for operators from Ls-spaces ...[+]
Subjects: Lorentz space , Factorization , Operator , Banach lattice , Concavity
Copyrigths: Reserva de todos los derechos
Source:
Positivity. (issn: 1385-1292 )
DOI: 10.1007/s11117-018-0593-2
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11117-018-0593-2
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/
Thanks:
Funding was provided by Secretaria de Estado de Investigacion, Desarrollo e Innovacion and FEDER (Grant No. MTM2016-77054-c2-1-P).
Type: Artículo

References

Achour, D., Mezrag, L.: Factorisation des opèrateurs sous-linéaires par $$ L^{p,\infty }(\varOmega , \nu )$$ L p , ∞ ( Ω , ν ) et $$L^{q,1} (\varOmega ,\nu )$$ L q , 1 ( Ω , ν ) . Ann. Sci. Math. Québec. 29, 109–121 (2002)

Berg, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, Heidelberg (1976)

Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi-Köthe function spaces. Positivity 5, 153–175 (2001) [+]
Achour, D., Mezrag, L.: Factorisation des opèrateurs sous-linéaires par $$ L^{p,\infty }(\varOmega , \nu )$$ L p , ∞ ( Ω , ν ) et $$L^{q,1} (\varOmega ,\nu )$$ L q , 1 ( Ω , ν ) . Ann. Sci. Math. Québec. 29, 109–121 (2002)

Berg, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, Heidelberg (1976)

Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi-Köthe function spaces. Positivity 5, 153–175 (2001)

Defant, A., Sánchez Pérez, E.A.: Domination of operators on function spaces. Math. Proc. Camb. Philos. Soc. 146, 57–66 (2009)

Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)

Kalton, N.J., Montgomery-Smith, S.J.: Set-functions and factorization. Arch. Math. 61, 183–200 (1993)

Krivine, J.L.: Théorèmes de factorisation dans les espaces réticulés. Séminaire d’analyse fonctionelle Maurey-Schwartz 1973–1974. Exposés XXII et XXIII. p.1–22. École Polytechnique, Paris (1974)

Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)

Mastyło, M., Sánchez Pérez, E.A.: Factorization of operators through Orlicz spaces. Bull. Malays. Math. Sci. Soc. 40, 1653–1675 (2017)

Mastyło, M., Szwedek, R.: Interpolative construction and factorization of operators. J. Math. Anal. Appl. 401, 198–208 (2013)

Maurey, B.: Theorémes de factorisation pour les opèrateurs linéaires à valeurs dans les spaces Lp. Séminaire d’analyse fonctionelle Maurey-Schwartz. 1972–1973. Exposés XVII, p.1–5. École Polytechnique, Paris (1973)

Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domain and Integral Extension of Operators acting in Function Spaces. Birkhäuser, Basel (2008)

Pisier, G.: Factorization of operators through $$L_{p\infty }$$ L p ∞ or $$L_{p1}$$ L p 1 and noncommutative generalizations. Math. Ann. 276, 105–136 (1986)

Rosenthal, H.P.: On subspaces of $$L^{p}$$ L p . Ann. Math. 97, 344–373 (1973)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record