Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez Pérez, Enrique Alfonso![]() |
es_ES |
dc.date.accessioned | 2021-01-30T04:31:23Z | |
dc.date.available | 2021-01-30T04:31:23Z | |
dc.date.issued | 2019-02 | es_ES |
dc.identifier.issn | 1385-1292 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160296 | |
dc.description.abstract | [EN] We show a factorization through Lorentz spaces for Banach-space-valued operators defined in Banach function spaces. Although our results are inspired in the classical factorization theorem for operators from Ls-spaces through Lorentz spaces Lq,1 due to Pisier, our arguments are different and essentially connected with Maurey's theorem for operators that factor through Lp-spaces. As a consequence, we obtain a new characterization of Lorentz Lq,1-spaces in terms of lattice geometric properties, in the line of the (isomorphic) description of Lp-spaces as the unique ones that are p-convex and p-concave. | es_ES |
dc.description.sponsorship | Funding was provided by Secretaria de Estado de Investigacion, Desarrollo e Innovacion and FEDER (Grant No. MTM2016-77054-c2-1-P). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Positivity | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Lorentz space | es_ES |
dc.subject | Factorization | es_ES |
dc.subject | Operator | es_ES |
dc.subject | Banach lattice | es_ES |
dc.subject | Concavity | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Factorization through Lorentz spaces for operators acting in Banach function spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11117-018-0593-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Sánchez Pérez, EA. (2019). Factorization through Lorentz spaces for operators acting in Banach function spaces. Positivity. 23(1):75-88. https://doi.org/10.1007/s11117-018-0593-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11117-018-0593-2 | es_ES |
dc.description.upvformatpinicio | 75 | es_ES |
dc.description.upvformatpfin | 88 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\406133 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Achour, D., Mezrag, L.: Factorisation des opèrateurs sous-linéaires par $$ L^{p,\infty }(\varOmega , \nu )$$ L p , ∞ ( Ω , ν ) et $$L^{q,1} (\varOmega ,\nu )$$ L q , 1 ( Ω , ν ) . Ann. Sci. Math. Québec. 29, 109–121 (2002) | es_ES |
dc.description.references | Berg, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, Heidelberg (1976) | es_ES |
dc.description.references | Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi-Köthe function spaces. Positivity 5, 153–175 (2001) | es_ES |
dc.description.references | Defant, A., Sánchez Pérez, E.A.: Domination of operators on function spaces. Math. Proc. Camb. Philos. Soc. 146, 57–66 (2009) | es_ES |
dc.description.references | Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995) | es_ES |
dc.description.references | Kalton, N.J., Montgomery-Smith, S.J.: Set-functions and factorization. Arch. Math. 61, 183–200 (1993) | es_ES |
dc.description.references | Krivine, J.L.: Théorèmes de factorisation dans les espaces réticulés. Séminaire d’analyse fonctionelle Maurey-Schwartz 1973–1974. Exposés XXII et XXIII. p.1–22. École Polytechnique, Paris (1974) | es_ES |
dc.description.references | Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979) | es_ES |
dc.description.references | Mastyło, M., Sánchez Pérez, E.A.: Factorization of operators through Orlicz spaces. Bull. Malays. Math. Sci. Soc. 40, 1653–1675 (2017) | es_ES |
dc.description.references | Mastyło, M., Szwedek, R.: Interpolative construction and factorization of operators. J. Math. Anal. Appl. 401, 198–208 (2013) | es_ES |
dc.description.references | Maurey, B.: Theorémes de factorisation pour les opèrateurs linéaires à valeurs dans les spaces Lp. Séminaire d’analyse fonctionelle Maurey-Schwartz. 1972–1973. Exposés XVII, p.1–5. École Polytechnique, Paris (1973) | es_ES |
dc.description.references | Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domain and Integral Extension of Operators acting in Function Spaces. Birkhäuser, Basel (2008) | es_ES |
dc.description.references | Pisier, G.: Factorization of operators through $$L_{p\infty }$$ L p ∞ or $$L_{p1}$$ L p 1 and noncommutative generalizations. Math. Ann. 276, 105–136 (1986) | es_ES |
dc.description.references | Rosenthal, H.P.: On subspaces of $$L^{p}$$ L p . Ann. Math. 97, 344–373 (1973) | es_ES |