Mostrar el registro sencillo del ítem
dc.contributor.author | Castilla Cortázar, María Isabel Cecilia | es_ES |
dc.contributor.author | Vidaurre, Ana | es_ES |
dc.contributor.author | Marí, B. | es_ES |
dc.contributor.author | CAMPILLO FERNANDEZ, ALBERTO JOSE | es_ES |
dc.date.accessioned | 2021-01-30T04:31:30Z | |
dc.date.available | 2021-01-30T04:31:30Z | |
dc.date.issued | 2019-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160298 | |
dc.description.abstract | [EN] A study was carried out to determine the effects of graphene oxide (GO) filler on the properties of poly(epsilon-caprolactone) (PCL) films. A series of nanocomposites were prepared, incorporating different graphene oxide filler contents (0.1, 0.2, and 0.5 wt%) by the solution mixing method, and an in-depth study was made of the morphological changes, crystallization, infrared absorbance, molecular weight, thermal properties, and biocompatibility as a function of GO content to determine their suitability for use in biomedical applications. The infrared absorbance showed the existence of intermolecular hydrogen bonds between the PCL's carbonyl groups and the GO's hydrogen-donating groups, which is in line with the apparent reduction in molecular weight at higher GO contents, indicated by the results of the gel permeation chromatography (GPC), and the thermal property analysis. Polarized optical microscopy (POM) showed that GO acts as a nucleating point for PCL crystals, increasing crystallinity and crystallization temperature. The biological properties of the composites studied indicate that adding only 0.1 wt% of GO can improve cellular viability and that the composite shows promise for use in biomedical applications. | es_ES |
dc.description.sponsorship | This work was supported by Projects GV/2016/067 of the Generalitat Valenciana and MAT2016-76039-C4-3-R of the Spanish Ministry of Economy and Competitiveness (MINECO). The authors are grateful to M. Monleon-Pradas for his helpful comments and G. Vilarino-Feltrer for his valuable advice on the cell culture experiments. A. Vidaurre would also like to express her gratitude for the support received from CIBER-BBN, an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. SEM, TEM and AFM were conducted by the authors at the Microscopy Service of the Universitat Politecnica de Valencia, whose advice is greatly appreciated. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Polymers | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Hybrids | es_ES |
dc.subject | Polycaprolactone (PCL) | es_ES |
dc.subject | Graphene oxide (GO) | es_ES |
dc.subject | Molecular weight | es_ES |
dc.subject | Morphology | es_ES |
dc.subject | FT-IR | es_ES |
dc.subject | Biocompatibility | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Morphology, Crystallinity, and Molecular Weight of Poly(E-caprolactone)/Graphene Oxide Hybrids | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/polym11071099 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-3-R/ES/UNA NUEVA GENERACION DE MATERIALES ELECTROACTIVOS Y BIOREACTORES PARA INGENIERIA DE TEJIDO MUSCULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2016%2F067/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Castilla Cortázar, MIC.; Vidaurre, A.; Marí, B.; Campillo Fernandez, AJ. (2019). Morphology, Crystallinity, and Molecular Weight of Poly(E-caprolactone)/Graphene Oxide Hybrids. Polymers. 11(7):1-19. https://doi.org/10.3390/polym11071099 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/polym11071099 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 2073-4360 | es_ES |
dc.identifier.pmid | 31261770 | es_ES |
dc.identifier.pmcid | PMC6680561 | es_ES |
dc.relation.pasarela | S\390594 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.description.references | Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017 | es_ES |
dc.description.references | Stankovich, S., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44(15), 3342-3347. doi:10.1016/j.carbon.2006.06.004 | es_ES |
dc.description.references | Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103g | es_ES |
dc.description.references | Konios, D., Stylianakis, M. M., Stratakis, E., & Kymakis, E. (2014). Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 430, 108-112. doi:10.1016/j.jcis.2014.05.033 | es_ES |
dc.description.references | Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11), 1350-1375. doi:10.1016/j.progpolymsci.2010.07.005 | es_ES |
dc.description.references | Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25. doi:10.1016/j.polymer.2010.11.042 | es_ES |
dc.description.references | Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., & Chen, Y. (2009). Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Advanced Functional Materials, 19(14), 2297-2302. doi:10.1002/adfm.200801776 | es_ES |
dc.description.references | Han, D., Yan, L., Chen, W., & Li, W. (2011). Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers, 83(2), 653-658. doi:10.1016/j.carbpol.2010.08.038 | es_ES |
dc.description.references | Luong, N. D., Hippi, U., Korhonen, J. T., Soininen, A. J., Ruokolainen, J., Johansson, L.-S., … Seppälä, J. (2011). Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer, 52(23), 5237-5242. doi:10.1016/j.polymer.2011.09.033 | es_ES |
dc.description.references | Yang, X., Tu, Y., Li, L., Shang, S., & Tao, X. (2010). Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Applied Materials & Interfaces, 2(6), 1707-1713. doi:10.1021/am100222m | es_ES |
dc.description.references | Salavagione, H. J., Gómez, M. A., & Martínez, G. (2009). Polymeric Modification of Graphene through Esterification of Graphite Oxide and Poly(vinyl alcohol). Macromolecules, 42(17), 6331-6334. doi:10.1021/ma900845w | es_ES |
dc.description.references | Xu, Z., & Gao, C. (2010). In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules, 43(16), 6716-6723. doi:10.1021/ma1009337 | es_ES |
dc.description.references | Kulkarni, D. D., Choi, I., Singamaneni, S. S., & Tsukruk, V. V. (2010). Graphene Oxide−Polyelectrolyte Nanomembranes. ACS Nano, 4(8), 4667-4676. doi:10.1021/nn101204d | es_ES |
dc.description.references | Bao, C., Guo, Y., Song, L., & Hu, Y. (2011). Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. Journal of Materials Chemistry, 21(36), 13942. doi:10.1039/c1jm11662b | es_ES |
dc.description.references | Tang, L.-C., Wan, Y.-J., Yan, D., Pei, Y.-B., Zhao, L., Li, Y.-B., … Lai, G.-Q. (2013). The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 60, 16-27. doi:10.1016/j.carbon.2013.03.050 | es_ES |
dc.description.references | Song, Y. S., & Youn, J. R. (2005). Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 43(7), 1378-1385. doi:10.1016/j.carbon.2005.01.007 | es_ES |
dc.description.references | Kim, H., Miura, Y., & Macosko, C. W. (2010). Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chemistry of Materials, 22(11), 3441-3450. doi:10.1021/cm100477v | es_ES |
dc.description.references | Ahmad, H., Fan, M., & Hui, D. (2018). Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering, 145, 270-280. doi:10.1016/j.compositesb.2018.02.006 | es_ES |
dc.description.references | Kai, W., Hirota, Y., Hua, L., & Inoue, Y. (2007). Thermal and mechanical properties of a poly(ε-caprolactone)/graphite oxide composite. Journal of Applied Polymer Science, 107(3), 1395-1400. doi:10.1002/app.27210 | es_ES |
dc.description.references | Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002 | es_ES |
dc.description.references | Wan, C., & Chen, B. (2011). Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity. Biomedical Materials, 6(5), 055010. doi:10.1088/1748-6041/6/5/055010 | es_ES |
dc.description.references | Song, J., Gao, H., Zhu, G., Cao, X., Shi, X., & Wang, Y. (2015). The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon, 95, 1039-1050. doi:10.1016/j.carbon.2015.09.011 | es_ES |
dc.description.references | Hua, L., Kai, W. H., & Inoue, Y. (2007). Crystallization behavior of poly(ϵ-caprolactone)/graphite oxide composites. Journal of Applied Polymer Science, 106(6), 4225-4232. doi:10.1002/app.26976 | es_ES |
dc.description.references | Sayyar, S., Murray, E., Thompson, B. C., Gambhir, S., Officer, D. L., & Wallace, G. G. (2013). Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon, 52, 296-304. doi:10.1016/j.carbon.2012.09.031 | es_ES |
dc.description.references | Murray, E., Sayyar, S., Thompson, B. C., Gorkin III, R., Officer, D. L., & Wallace, G. G. (2015). A bio-friendly, green route to processable, biocompatible graphene/polymer composites. RSC Advances, 5(56), 45284-45290. doi:10.1039/c5ra07210g | es_ES |
dc.description.references | Hassanzadeh, S., Adolfsson, K. H., Wu, D., & Hakkarainen, M. (2015). Supramolecular Assembly of Biobased Graphene Oxide Quantum Dots Controls the Morphology of and Induces Mineralization on Poly(ε-caprolactone) Films. Biomacromolecules, 17(1), 256-261. doi:10.1021/acs.biomac.5b01339 | es_ES |
dc.description.references | Kumar, S., Azam, D., Raj, S., Kolanthai, E., Vasu, K. S., Sood, A. K., & Chatterjee, K. (2015). 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(4), 732-749. doi:10.1002/jbm.b.33549 | es_ES |
dc.description.references | Shin, S. R., Li, Y.-C., Jang, H. L., Khoshakhlagh, P., Akbari, M., Nasajpour, A., … Khademhosseini, A. (2016). Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 105, 255-274. doi:10.1016/j.addr.2016.03.007 | es_ES |
dc.description.references | Bianco, A. (2013). Graphene: Safe or Toxic? The Two Faces of the Medal. Angewandte Chemie International Edition, 52(19), 4986-4997. doi:10.1002/anie.201209099 | es_ES |
dc.description.references | Zhang, X., Yin, J., Peng, C., Hu, W., Zhu, Z., Li, W., … Huang, Q. (2011). Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 49(3), 986-995. doi:10.1016/j.carbon.2010.11.005 | es_ES |
dc.description.references | Jasim, D. A., Murphy, S., Newman, L., Mironov, A., Prestat, E., McCaffrey, J., … Kostarelos, K. (2016). The Effects of Extensive Glomerular Filtration of Thin Graphene Oxide Sheets on Kidney Physiology. ACS Nano, 10(12), 10753-10767. doi:10.1021/acsnano.6b03358 | es_ES |
dc.description.references | Santos, C. M., Mangadlao, J., Ahmed, F., Leon, A., Advincula, R. C., & Rodrigues, D. F. (2012). Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology, 23(39), 395101. doi:10.1088/0957-4484/23/39/395101 | es_ES |
dc.description.references | Lim, H. N., Huang, N. M., & Loo, C. H. (2012). Facile preparation of graphene-based chitosan films: Enhanced thermal, mechanical and antibacterial properties. Journal of Non-Crystalline Solids, 358(3), 525-530. doi:10.1016/j.jnoncrysol.2011.11.007 | es_ES |
dc.description.references | Some, S., Ho, S.-M., Dua, P., Hwang, E., Shin, Y. H., Yoo, H., … Lee, H. (2012). Dual Functions of Highly Potent Graphene Derivative–Poly-l-Lysine Composites To Inhibit Bacteria and Support Human Cells. ACS Nano, 6(8), 7151-7161. doi:10.1021/nn302215y | es_ES |
dc.description.references | Sydlik, S. A., Jhunjhunwala, S., Webber, M. J., Anderson, D. G., & Langer, R. (2015). In Vivo Compatibility of Graphene Oxide with Differing Oxidation States. ACS Nano, 9(4), 3866-3874. doi:10.1021/acsnano.5b01290 | es_ES |
dc.description.references | Crescenzi, V., Manzini, G., Calzolari, G., & Borri, C. (1972). Thermodynamics of fusion of poly-β-propiolactone and poly-ϵ-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. European Polymer Journal, 8(3), 449-463. doi:10.1016/0014-3057(72)90109-7 | es_ES |
dc.description.references | Luo, H., Meng, X., Cheng, C., Dong, Z., Zhang, S., & Li, B. (2010). Enzymatic Degradation of Supramolecular Materials Based on Partial Inclusion Complex Formation between α-Cyclodextrin and Poly(ε-caprolactone). The Journal of Physical Chemistry B, 114(13), 4739-4745. doi:10.1021/jp1001836 | es_ES |
dc.description.references | Vidaurre, A., Dueñas, J. M. M., Estellés, J. M., & Cortázar, I. C. (2008). Influence of Enzymatic Degradation on Physical Properties of Poly(ε-caprolactone) Films and Sponges. Macromolecular Symposia, 269(1), 38-46. doi:10.1002/masy.200850907 | es_ES |
dc.description.references | Honma, T., Senda, T., & Inoue, Y. (2003). Thermal properties and crystallization behaviour of blends of poly(?-caprolactone) with chitin and chitosan. Polymer International, 52(12), 1839-1846. doi:10.1002/pi.1380 | es_ES |
dc.description.references | Ramazani, S., & Karimi, M. (2015). Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties. Materials Science and Engineering: C, 56, 325-334. doi:10.1016/j.msec.2015.06.045 | es_ES |
dc.description.references | Coleman, M. M., & Zarian, J. (1979). Fourier-transform infrared studies of polymer blends. II. Poly(ε-caprolactone)–poly(vinyl chloride) system. Journal of Polymer Science: Polymer Physics Edition, 17(5), 837-850. doi:10.1002/pol.1979.180170509 | es_ES |
dc.description.references | Huang, Y., Xu, Z., Huang, Y., Ma, D., Yang, J., & Mays, J. W. (2003). Characterization of Poly(ε-Caprolactone) via Size Exclusion Chromatography with Online Right-Angle Laser-Light Scattering and Viscometric Detectors. International Journal of Polymer Analysis and Characterization, 8(6), 383-394. doi:10.1080/714975019 | es_ES |
dc.description.references | Sharaf, M. A., Kloczkowski, A., Sen, T. Z., Jacob, K. I., & Mark, J. E. (2006). Filler-induced deformations of amorphous polyethylene chains. The effects of the deformations on elastomeric properties, and some comparisons with experiments. European Polymer Journal, 42(4), 796-806. doi:10.1016/j.eurpolymj.2005.10.009 | es_ES |
dc.description.references | Nusser, K., Neueder, S., Schneider, G. J., Meyer, M., Pyckhout-Hintzen, W., Willner, L., … Richter, D. (2010). Conformations of Silica−Poly(ethylene−propylene) Nanocomposites. Macromolecules, 43(23), 9837-9847. doi:10.1021/ma101898c | es_ES |
dc.description.references | Vacatello, M. (2002). Chain Dimensions in Filled Polymers: An Intriguing Problem. Macromolecules, 35(21), 8191-8193. doi:10.1021/ma020416s | es_ES |
dc.description.references | Duan, T., Lv, Y., Xu, H., Jin, J., & Wang, Z. (2018). Structural Effects of Residual Groups of Graphene Oxide on Poly(ε-Caprolactone)/Graphene Oxide Nanocomposite. Crystals, 8(7), 270. doi:10.3390/cryst8070270 | es_ES |
dc.description.references | Wang, G., Wei, Z., Sang, L., Chen, G., Zhang, W., Dong, X., & Qi, M. (2013). Morphology, crystallization and mechanical properties of poly(ɛ-caprolactone)/graphene oxide nanocomposites. Chinese Journal of Polymer Science, 31(8), 1148-1160. doi:10.1007/s10118-013-1278-8 | es_ES |
dc.description.references | Balkova, R., Hermanova, S., Voberkova, S., Damborsky, P., Richtera, L., Omelkova, J., & Jancar, J. (2013). Structure and Morphology of Microbial Degraded Poly(ε-caprolactone)/Graphite Oxide Composite. Journal of Polymers and the Environment, 22(2), 190-199. doi:10.1007/s10924-013-0630-y | es_ES |
dc.description.references | Yıldırım, S., Demirtaş, T. T., Dinçer, C. A., Yıldız, N., & Karakeçili, A. (2018). Preparation of polycaprolactone/graphene oxide scaffolds: A green route combining supercritial CO2 technology and porogen leaching. The Journal of Supercritical Fluids, 133, 156-162. doi:10.1016/j.supflu.2017.10.009 | es_ES |
dc.description.references | Peng, H., Han, Y., Liu, T., Tjiu, W. C., & He, C. (2010). Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochimica Acta, 502(1-2), 1-7. doi:10.1016/j.tca.2010.01.009 | es_ES |
dc.description.references | Michailidis, M., Verros, G. D., Deliyanni, E. A., Andriotis, E. G., & Achilias, D. S. (2017). An experimental and theoretical study of butyl methacrylatein situradical polymerization kinetics in the presence of graphene oxide nanoadditive. Journal of Polymer Science Part A: Polymer Chemistry, 55(8), 1433-1441. doi:10.1002/pola.28512 | es_ES |
dc.description.references | Tsagkalias, I., Manios, T., & Achilias, D. (2017). Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique. Polymers, 9(9), 432. doi:10.3390/polym9090432 | es_ES |
dc.description.references | Geng, L.-H., Peng, X.-F., Jing, X., Li, L.-W., Huang, A., Xu, B.-P., … Mi, H.-Y. (2016). Investigation of poly(l-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming. Journal of Materials Research, 31(3), 348-359. doi:10.1557/jmr.2016.13 | es_ES |
dc.description.references | Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., & Fu, S. (2011). Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52(18), 4001-4010. doi:10.1016/j.polymer.2011.06.045 | es_ES |
dc.description.references | Bao, C., Guo, Y., Song, L., Kan, Y., Qian, X., & Hu, Y. (2011). In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. Journal of Materials Chemistry, 21(35), 13290. doi:10.1039/c1jm11434d | es_ES |
dc.description.references | Sánchez-Correa, F., Vidaurre-Agut, C., Serrano-Aroca, Á., & Campillo-Fernández, A. J. (2017). Poly(2-hydroxyethyl acrylate) hydrogels reinforced with graphene oxide: Remarkable improvement of water diffusion and mechanical properties. Journal of Applied Polymer Science, 135(15), 46158. doi:10.1002/app.46158 | es_ES |
dc.description.references | Liao, K.-H., Lin, Y.-S., Macosko, C. W., & Haynes, C. L. (2011). Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Applied Materials & Interfaces, 3(7), 2607-2615. doi:10.1021/am200428v | es_ES |