Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017
Stankovich, S., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44(15), 3342-3347. doi:10.1016/j.carbon.2006.06.004
Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103g
[+]
Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017
Stankovich, S., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44(15), 3342-3347. doi:10.1016/j.carbon.2006.06.004
Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103g
Konios, D., Stylianakis, M. M., Stratakis, E., & Kymakis, E. (2014). Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 430, 108-112. doi:10.1016/j.jcis.2014.05.033
Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11), 1350-1375. doi:10.1016/j.progpolymsci.2010.07.005
Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25. doi:10.1016/j.polymer.2010.11.042
Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., & Chen, Y. (2009). Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Advanced Functional Materials, 19(14), 2297-2302. doi:10.1002/adfm.200801776
Han, D., Yan, L., Chen, W., & Li, W. (2011). Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers, 83(2), 653-658. doi:10.1016/j.carbpol.2010.08.038
Luong, N. D., Hippi, U., Korhonen, J. T., Soininen, A. J., Ruokolainen, J., Johansson, L.-S., … Seppälä, J. (2011). Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer, 52(23), 5237-5242. doi:10.1016/j.polymer.2011.09.033
Yang, X., Tu, Y., Li, L., Shang, S., & Tao, X. (2010). Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Applied Materials & Interfaces, 2(6), 1707-1713. doi:10.1021/am100222m
Salavagione, H. J., Gómez, M. A., & Martínez, G. (2009). Polymeric Modification of Graphene through Esterification of Graphite Oxide and Poly(vinyl alcohol). Macromolecules, 42(17), 6331-6334. doi:10.1021/ma900845w
Xu, Z., & Gao, C. (2010). In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules, 43(16), 6716-6723. doi:10.1021/ma1009337
Kulkarni, D. D., Choi, I., Singamaneni, S. S., & Tsukruk, V. V. (2010). Graphene Oxide−Polyelectrolyte Nanomembranes. ACS Nano, 4(8), 4667-4676. doi:10.1021/nn101204d
Bao, C., Guo, Y., Song, L., & Hu, Y. (2011). Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. Journal of Materials Chemistry, 21(36), 13942. doi:10.1039/c1jm11662b
Tang, L.-C., Wan, Y.-J., Yan, D., Pei, Y.-B., Zhao, L., Li, Y.-B., … Lai, G.-Q. (2013). The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 60, 16-27. doi:10.1016/j.carbon.2013.03.050
Song, Y. S., & Youn, J. R. (2005). Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 43(7), 1378-1385. doi:10.1016/j.carbon.2005.01.007
Kim, H., Miura, Y., & Macosko, C. W. (2010). Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chemistry of Materials, 22(11), 3441-3450. doi:10.1021/cm100477v
Ahmad, H., Fan, M., & Hui, D. (2018). Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering, 145, 270-280. doi:10.1016/j.compositesb.2018.02.006
Kai, W., Hirota, Y., Hua, L., & Inoue, Y. (2007). Thermal and mechanical properties of a poly(ε-caprolactone)/graphite oxide composite. Journal of Applied Polymer Science, 107(3), 1395-1400. doi:10.1002/app.27210
Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002
Wan, C., & Chen, B. (2011). Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity. Biomedical Materials, 6(5), 055010. doi:10.1088/1748-6041/6/5/055010
Song, J., Gao, H., Zhu, G., Cao, X., Shi, X., & Wang, Y. (2015). The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon, 95, 1039-1050. doi:10.1016/j.carbon.2015.09.011
Hua, L., Kai, W. H., & Inoue, Y. (2007). Crystallization behavior of poly(ϵ-caprolactone)/graphite oxide composites. Journal of Applied Polymer Science, 106(6), 4225-4232. doi:10.1002/app.26976
Sayyar, S., Murray, E., Thompson, B. C., Gambhir, S., Officer, D. L., & Wallace, G. G. (2013). Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon, 52, 296-304. doi:10.1016/j.carbon.2012.09.031
Murray, E., Sayyar, S., Thompson, B. C., Gorkin III, R., Officer, D. L., & Wallace, G. G. (2015). A bio-friendly, green route to processable, biocompatible graphene/polymer composites. RSC Advances, 5(56), 45284-45290. doi:10.1039/c5ra07210g
Hassanzadeh, S., Adolfsson, K. H., Wu, D., & Hakkarainen, M. (2015). Supramolecular Assembly of Biobased Graphene Oxide Quantum Dots Controls the Morphology of and Induces Mineralization on Poly(ε-caprolactone) Films. Biomacromolecules, 17(1), 256-261. doi:10.1021/acs.biomac.5b01339
Kumar, S., Azam, D., Raj, S., Kolanthai, E., Vasu, K. S., Sood, A. K., & Chatterjee, K. (2015). 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(4), 732-749. doi:10.1002/jbm.b.33549
Shin, S. R., Li, Y.-C., Jang, H. L., Khoshakhlagh, P., Akbari, M., Nasajpour, A., … Khademhosseini, A. (2016). Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 105, 255-274. doi:10.1016/j.addr.2016.03.007
Bianco, A. (2013). Graphene: Safe or Toxic? The Two Faces of the Medal. Angewandte Chemie International Edition, 52(19), 4986-4997. doi:10.1002/anie.201209099
Zhang, X., Yin, J., Peng, C., Hu, W., Zhu, Z., Li, W., … Huang, Q. (2011). Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 49(3), 986-995. doi:10.1016/j.carbon.2010.11.005
Jasim, D. A., Murphy, S., Newman, L., Mironov, A., Prestat, E., McCaffrey, J., … Kostarelos, K. (2016). The Effects of Extensive Glomerular Filtration of Thin Graphene Oxide Sheets on Kidney Physiology. ACS Nano, 10(12), 10753-10767. doi:10.1021/acsnano.6b03358
Santos, C. M., Mangadlao, J., Ahmed, F., Leon, A., Advincula, R. C., & Rodrigues, D. F. (2012). Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology, 23(39), 395101. doi:10.1088/0957-4484/23/39/395101
Lim, H. N., Huang, N. M., & Loo, C. H. (2012). Facile preparation of graphene-based chitosan films: Enhanced thermal, mechanical and antibacterial properties. Journal of Non-Crystalline Solids, 358(3), 525-530. doi:10.1016/j.jnoncrysol.2011.11.007
Some, S., Ho, S.-M., Dua, P., Hwang, E., Shin, Y. H., Yoo, H., … Lee, H. (2012). Dual Functions of Highly Potent Graphene Derivative–Poly-l-Lysine Composites To Inhibit Bacteria and Support Human Cells. ACS Nano, 6(8), 7151-7161. doi:10.1021/nn302215y
Sydlik, S. A., Jhunjhunwala, S., Webber, M. J., Anderson, D. G., & Langer, R. (2015). In Vivo Compatibility of Graphene Oxide with Differing Oxidation States. ACS Nano, 9(4), 3866-3874. doi:10.1021/acsnano.5b01290
Crescenzi, V., Manzini, G., Calzolari, G., & Borri, C. (1972). Thermodynamics of fusion of poly-β-propiolactone and poly-ϵ-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. European Polymer Journal, 8(3), 449-463. doi:10.1016/0014-3057(72)90109-7
Luo, H., Meng, X., Cheng, C., Dong, Z., Zhang, S., & Li, B. (2010). Enzymatic Degradation of Supramolecular Materials Based on Partial Inclusion Complex Formation between α-Cyclodextrin and Poly(ε-caprolactone). The Journal of Physical Chemistry B, 114(13), 4739-4745. doi:10.1021/jp1001836
Vidaurre, A., Dueñas, J. M. M., Estellés, J. M., & Cortázar, I. C. (2008). Influence of Enzymatic Degradation on Physical Properties of Poly(ε-caprolactone) Films and Sponges. Macromolecular Symposia, 269(1), 38-46. doi:10.1002/masy.200850907
Honma, T., Senda, T., & Inoue, Y. (2003). Thermal properties and crystallization behaviour of blends of poly(?-caprolactone) with chitin and chitosan. Polymer International, 52(12), 1839-1846. doi:10.1002/pi.1380
Ramazani, S., & Karimi, M. (2015). Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties. Materials Science and Engineering: C, 56, 325-334. doi:10.1016/j.msec.2015.06.045
Coleman, M. M., & Zarian, J. (1979). Fourier-transform infrared studies of polymer blends. II. Poly(ε-caprolactone)–poly(vinyl chloride) system. Journal of Polymer Science: Polymer Physics Edition, 17(5), 837-850. doi:10.1002/pol.1979.180170509
Huang, Y., Xu, Z., Huang, Y., Ma, D., Yang, J., & Mays, J. W. (2003). Characterization of Poly(ε-Caprolactone) via Size Exclusion Chromatography with Online Right-Angle Laser-Light Scattering and Viscometric Detectors. International Journal of Polymer Analysis and Characterization, 8(6), 383-394. doi:10.1080/714975019
Sharaf, M. A., Kloczkowski, A., Sen, T. Z., Jacob, K. I., & Mark, J. E. (2006). Filler-induced deformations of amorphous polyethylene chains. The effects of the deformations on elastomeric properties, and some comparisons with experiments. European Polymer Journal, 42(4), 796-806. doi:10.1016/j.eurpolymj.2005.10.009
Nusser, K., Neueder, S., Schneider, G. J., Meyer, M., Pyckhout-Hintzen, W., Willner, L., … Richter, D. (2010). Conformations of Silica−Poly(ethylene−propylene) Nanocomposites. Macromolecules, 43(23), 9837-9847. doi:10.1021/ma101898c
Vacatello, M. (2002). Chain Dimensions in Filled Polymers: An Intriguing Problem. Macromolecules, 35(21), 8191-8193. doi:10.1021/ma020416s
Duan, T., Lv, Y., Xu, H., Jin, J., & Wang, Z. (2018). Structural Effects of Residual Groups of Graphene Oxide on Poly(ε-Caprolactone)/Graphene Oxide Nanocomposite. Crystals, 8(7), 270. doi:10.3390/cryst8070270
Wang, G., Wei, Z., Sang, L., Chen, G., Zhang, W., Dong, X., & Qi, M. (2013). Morphology, crystallization and mechanical properties of poly(ɛ-caprolactone)/graphene oxide nanocomposites. Chinese Journal of Polymer Science, 31(8), 1148-1160. doi:10.1007/s10118-013-1278-8
Balkova, R., Hermanova, S., Voberkova, S., Damborsky, P., Richtera, L., Omelkova, J., & Jancar, J. (2013). Structure and Morphology of Microbial Degraded Poly(ε-caprolactone)/Graphite Oxide Composite. Journal of Polymers and the Environment, 22(2), 190-199. doi:10.1007/s10924-013-0630-y
Yıldırım, S., Demirtaş, T. T., Dinçer, C. A., Yıldız, N., & Karakeçili, A. (2018). Preparation of polycaprolactone/graphene oxide scaffolds: A green route combining supercritial CO2 technology and porogen leaching. The Journal of Supercritical Fluids, 133, 156-162. doi:10.1016/j.supflu.2017.10.009
Peng, H., Han, Y., Liu, T., Tjiu, W. C., & He, C. (2010). Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochimica Acta, 502(1-2), 1-7. doi:10.1016/j.tca.2010.01.009
Michailidis, M., Verros, G. D., Deliyanni, E. A., Andriotis, E. G., & Achilias, D. S. (2017). An experimental and theoretical study of butyl methacrylatein situradical polymerization kinetics in the presence of graphene oxide nanoadditive. Journal of Polymer Science Part A: Polymer Chemistry, 55(8), 1433-1441. doi:10.1002/pola.28512
Tsagkalias, I., Manios, T., & Achilias, D. (2017). Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique. Polymers, 9(9), 432. doi:10.3390/polym9090432
Geng, L.-H., Peng, X.-F., Jing, X., Li, L.-W., Huang, A., Xu, B.-P., … Mi, H.-Y. (2016). Investigation of poly(l-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming. Journal of Materials Research, 31(3), 348-359. doi:10.1557/jmr.2016.13
Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., & Fu, S. (2011). Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52(18), 4001-4010. doi:10.1016/j.polymer.2011.06.045
Bao, C., Guo, Y., Song, L., Kan, Y., Qian, X., & Hu, Y. (2011). In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. Journal of Materials Chemistry, 21(35), 13290. doi:10.1039/c1jm11434d
Sánchez-Correa, F., Vidaurre-Agut, C., Serrano-Aroca, Á., & Campillo-Fernández, A. J. (2017). Poly(2-hydroxyethyl acrylate) hydrogels reinforced with graphene oxide: Remarkable improvement of water diffusion and mechanical properties. Journal of Applied Polymer Science, 135(15), 46158. doi:10.1002/app.46158
Liao, K.-H., Lin, Y.-S., Macosko, C. W., & Haynes, C. L. (2011). Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Applied Materials & Interfaces, 3(7), 2607-2615. doi:10.1021/am200428v
[-]