Abramovich, Y.A., Kitover, A.K.: Inverses of Disjointness Preserving Operators. American Mathematical Society, Providence (2000)
Abramovich, Y.A., Wickstead, A.W.: When each continuous operator is regular II. Indag. Math. (N.S.) 8(3), 281–294 (1997)
Alaminos, J., Brešar, M., Extremera, J., Villena, A.R.: Maps preserving zero products. Studia Math. 193(2), 131–159 (2009)
[+]
Abramovich, Y.A., Kitover, A.K.: Inverses of Disjointness Preserving Operators. American Mathematical Society, Providence (2000)
Abramovich, Y.A., Wickstead, A.W.: When each continuous operator is regular II. Indag. Math. (N.S.) 8(3), 281–294 (1997)
Alaminos, J., Brešar, M., Extremera, J., Villena, A.R.: Maps preserving zero products. Studia Math. 193(2), 131–159 (2009)
Alaminos, J., Brešar, M., Extremera, J., Villena, A.R.: On bilinear maps determined by rank one idempotents. Linear Algebra Appl. 432, 738–743 (2010)
Alaminos, J., Extremera, J., Villena, A.R.: Orthogonality preserving linear maps on group algebras. Math. Proc. Camb. Philos. Soc. 158, 493–504 (2015)
Ben Amor, F.: On orthosymmetric bilinear maps. Positivity 14, 123–134 (2010)
Astashkin, S.V., Maligranda, L.: Structure of Cesàro function spaces: a survey. Banach Center Publ. 102, 13–40 (2014)
Beckenstein, E., Narici, L.: A non-Archimedean Stone–Banach theorem. Proc. Am. Math. Soc. 100(2), 242–246 (1987)
Bu, Q., Buskes, G., Kusraev, A.G.: Bilinear maps on products of vector lattices: a survey. In: Boulabiar, K., Buskes, G., Triki, A. (eds.) Positivity: Trends in Mathematics, pp. 97–126. Springer, Birkhuser (2007)
Buskes, G., van Rooij, A.: Almost f-algebras: commutativity and Cauchy–Schwarz inequality. Positivity 4, 227–231 (2000)
Buskes, G., van Rooij, A.: Squares of Riesz spaces. Rocky Mt. J. Math. 31(1), 45–56 (2001)
Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Generalized perfect spaces. Indag. Math. (N.S.) 19(3), 359–378 (2008)
Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Studia Math. 24, 113–190 (1964)
Defant, A.: Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001)
Delgado Garrido, O., Sánchez Pérez, E.A.: Strong factorizations between couples of operators on Banach function spaces. J. Convex Anal. 20(3), 599–616 (2013)
Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, vol. 43. Cambridge University Press, Cambridge (1995)
Erdoğan, E., Calabuig, J.M., Sánchez Pérez, E.A.: Convolution-continuous bilinear operators acting in Hilbert spaces of integrable functions. Ann. Funct. Anal. 9(2), 166–179 (2018)
Diestel, J., Uhl, J.J.: Vector Measures. American Mathematical Society, Providence (1977)
Fremlin, D.H.: Tensor products of Archimedean vector lattices. Am. J. Math. 94, 778–798 (1972)
Gillespie, T.A.: Factorization in Banach function spaces. Nederl. Akad. Wetensch. Indag. Math. 43(3), 287–300 (1981)
Grafakos, L., Li, X.: Uniform bounds for the bilinear Hilbert transforms I. Ann. Math. 159, 889–933 (2004)
Kantorovich, K.L., Akilov, G.P.: Functional Analysis, Nauka, Moscow 1977 (Russian). English transl. Pergamon Press, Oxford, Elmsford, New York (1982)
Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise products of some Banach function spaces and factorization. J. Funct. Anal. 266(2), 616–659 (2014)
Kolwicz, P., Leśnik, K.: Topological and geometrical structure of Calderón–Lozanovskii construction. Math. Inequal. Appl. 13(1), 175–196 (2010)
Kühn, B.: Banachverbände mit ordnungsstetiger dualnorm. Math. Z. 167(3), 271–277 (1979)
Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II: Function Spaces, vol. 97. Springer, Berlin (1979)
Lozanovskii, G.Ya.: On some Banach lattices. Sibirsk. Mat. Zh. 10, 584-599 (1969)(Russian)
English transl. in Siberian Math. J. 10(3), 419-431 (1969)
Maligranda, L., Persson, L.E.: Generalized duality of some Banach function spaces. Nederl. Akad. Wetensch. Indag. Math. 51(3), 323–338 (1989)
Okada, S., Ricker, W., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators. Oper. Theory Adv. Appl. Birkhäuser/Springer 180 (2008)
Ryan, R.: Introduction to Tensor Product of Banach Spaces. Springer, London (2002)
Sánchez Pérez, E.A., Werner, D.: Slice continuity for operators and the Daugavet property for bilinear maps. Funct. Approx. Comment. Math. 50(2), 251–269 (2014)
Schep, A.R.: Products and factors of Banach function spaces. Positivity 14(2), 301–319 (2010)
Villarroya, F.: Bilinear multipliers on Lorentz spaces. Czechoslov. Math. J. 58(4), 1045–1057 (2008)
[-]