- -

Product factorability of integral bilinear operators on Banach function spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Product factorability of integral bilinear operators on Banach function spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Erdogan, E. es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.contributor.author Gok, O. es_ES
dc.date.accessioned 2021-01-30T04:31:37Z
dc.date.available 2021-01-30T04:31:37Z
dc.date.issued 2019-07 es_ES
dc.identifier.issn 1385-1292 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160301
dc.description.abstract [EN] This paper deals with bilinear operators acting in pairs of Banach function spaces that factor through the pointwise product. We find similar situations in different contexts of the functional analysis, including abstract vector lattices¿orthosymmetric maps, C¿-algebras¿zero product preserving operators, and classical and harmonic analysis¿integral bilinear operators. Bringing together the ideas of these areas, we show new factorization theorems and characterizations by means of norm inequalities. The objective of the paper is to apply these tools to provide new descriptions of some classes of bilinear integral operators, and to obtain integral representations for abstract classes of bilinear maps satisfying certain domination properties. es_ES
dc.description.sponsorship The first author was supported by TUBITAK-The Scientific and Technological Research Council of Turkey, Grant No. 2211/E. The second author was supported by Ministerio de Economia y Competitividad (Spain) and FEDER, Grant MTM2016-77054-C2-1-P. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Positivity es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Integral bilinear operators es_ES
dc.subject Banach function spaces es_ES
dc.subject Factorization es_ES
dc.subject Zero product preserving es_ES
dc.subject Symmetric operator es_ES
dc.subject 47H60 es_ES
dc.subject 46E30 es_ES
dc.subject 47A68 es_ES
dc.subject 47B38 es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Product factorability of integral bilinear operators on Banach function spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11117-018-0632-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/TUBITAK//2211-E/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Erdogan, E.; Sánchez Pérez, EA.; Gok, O. (2019). Product factorability of integral bilinear operators on Banach function spaces. Positivity. 23(3):671-696. https://doi.org/10.1007/s11117-018-0632-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11117-018-0632-z es_ES
dc.description.upvformatpinicio 671 es_ES
dc.description.upvformatpfin 696 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\406126 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Scientific and Technological Research Council of Turkey es_ES
dc.description.references Abramovich, Y.A., Kitover, A.K.: Inverses of Disjointness Preserving Operators. American Mathematical Society, Providence (2000) es_ES
dc.description.references Abramovich, Y.A., Wickstead, A.W.: When each continuous operator is regular II. Indag. Math. (N.S.) 8(3), 281–294 (1997) es_ES
dc.description.references Alaminos, J., Brešar, M., Extremera, J., Villena, A.R.: Maps preserving zero products. Studia Math. 193(2), 131–159 (2009) es_ES
dc.description.references Alaminos, J., Brešar, M., Extremera, J., Villena, A.R.: On bilinear maps determined by rank one idempotents. Linear Algebra Appl. 432, 738–743 (2010) es_ES
dc.description.references Alaminos, J., Extremera, J., Villena, A.R.: Orthogonality preserving linear maps on group algebras. Math. Proc. Camb. Philos. Soc. 158, 493–504 (2015) es_ES
dc.description.references Ben Amor, F.: On orthosymmetric bilinear maps. Positivity 14, 123–134 (2010) es_ES
dc.description.references Astashkin, S.V., Maligranda, L.: Structure of Cesàro function spaces: a survey. Banach Center Publ. 102, 13–40 (2014) es_ES
dc.description.references Beckenstein, E., Narici, L.: A non-Archimedean Stone–Banach theorem. Proc. Am. Math. Soc. 100(2), 242–246 (1987) es_ES
dc.description.references Bu, Q., Buskes, G., Kusraev, A.G.: Bilinear maps on products of vector lattices: a survey. In: Boulabiar, K., Buskes, G., Triki, A. (eds.) Positivity: Trends in Mathematics, pp. 97–126. Springer, Birkhuser (2007) es_ES
dc.description.references Buskes, G., van Rooij, A.: Almost f-algebras: commutativity and Cauchy–Schwarz inequality. Positivity 4, 227–231 (2000) es_ES
dc.description.references Buskes, G., van Rooij, A.: Squares of Riesz spaces. Rocky Mt. J. Math. 31(1), 45–56 (2001) es_ES
dc.description.references Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Generalized perfect spaces. Indag. Math. (N.S.) 19(3), 359–378 (2008) es_ES
dc.description.references Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Studia Math. 24, 113–190 (1964) es_ES
dc.description.references Defant, A.: Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001) es_ES
dc.description.references Delgado Garrido, O., Sánchez Pérez, E.A.: Strong factorizations between couples of operators on Banach function spaces. J. Convex Anal. 20(3), 599–616 (2013) es_ES
dc.description.references Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, vol. 43. Cambridge University Press, Cambridge (1995) es_ES
dc.description.references Erdoğan, E., Calabuig, J.M., Sánchez Pérez, E.A.: Convolution-continuous bilinear operators acting in Hilbert spaces of integrable functions. Ann. Funct. Anal. 9(2), 166–179 (2018) es_ES
dc.description.references Diestel, J., Uhl, J.J.: Vector Measures. American Mathematical Society, Providence (1977) es_ES
dc.description.references Fremlin, D.H.: Tensor products of Archimedean vector lattices. Am. J. Math. 94, 778–798 (1972) es_ES
dc.description.references Gillespie, T.A.: Factorization in Banach function spaces. Nederl. Akad. Wetensch. Indag. Math. 43(3), 287–300 (1981) es_ES
dc.description.references Grafakos, L., Li, X.: Uniform bounds for the bilinear Hilbert transforms I. Ann. Math. 159, 889–933 (2004) es_ES
dc.description.references Kantorovich, K.L., Akilov, G.P.: Functional Analysis, Nauka, Moscow 1977 (Russian). English transl. Pergamon Press, Oxford, Elmsford, New York (1982) es_ES
dc.description.references Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise products of some Banach function spaces and factorization. J. Funct. Anal. 266(2), 616–659 (2014) es_ES
dc.description.references Kolwicz, P., Leśnik, K.: Topological and geometrical structure of Calderón–Lozanovskii construction. Math. Inequal. Appl. 13(1), 175–196 (2010) es_ES
dc.description.references Kühn, B.: Banachverbände mit ordnungsstetiger dualnorm. Math. Z. 167(3), 271–277 (1979) es_ES
dc.description.references Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II: Function Spaces, vol. 97. Springer, Berlin (1979) es_ES
dc.description.references Lozanovskii, G.Ya.: On some Banach lattices. Sibirsk. Mat. Zh. 10, 584-599 (1969)(Russian) es_ES
dc.description.references English transl. in Siberian Math. J. 10(3), 419-431 (1969) es_ES
dc.description.references Maligranda, L., Persson, L.E.: Generalized duality of some Banach function spaces. Nederl. Akad. Wetensch. Indag. Math. 51(3), 323–338 (1989) es_ES
dc.description.references Okada, S., Ricker, W., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators. Oper. Theory Adv. Appl. Birkhäuser/Springer 180 (2008) es_ES
dc.description.references Ryan, R.: Introduction to Tensor Product of Banach Spaces. Springer, London (2002) es_ES
dc.description.references Sánchez Pérez, E.A., Werner, D.: Slice continuity for operators and the Daugavet property for bilinear maps. Funct. Approx. Comment. Math. 50(2), 251–269 (2014) es_ES
dc.description.references Schep, A.R.: Products and factors of Banach function spaces. Positivity 14(2), 301–319 (2010) es_ES
dc.description.references Villarroya, F.: Bilinear multipliers on Lorentz spaces. Czechoslov. Math. J. 58(4), 1045–1057 (2008) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem