- -

Inhibition of NO Biosynthetic Activities during Rehydration of Ramalina farinacea Lichen Thalli Provokes Increases in Lipid Peroxidation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inhibition of NO Biosynthetic Activities during Rehydration of Ramalina farinacea Lichen Thalli Provokes Increases in Lipid Peroxidation

Mostrar el registro completo del ítem

Expósito, JR.; Martín San Román, S.; Barreno, E.; Reig-Armiñana, J.; García-Breijo, F.; Catalá, M. (2019). Inhibition of NO Biosynthetic Activities during Rehydration of Ramalina farinacea Lichen Thalli Provokes Increases in Lipid Peroxidation. Plants. 8(7):1-15. https://doi.org/10.3390/plants8070189

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160303

Ficheros en el ítem

Metadatos del ítem

Título: Inhibition of NO Biosynthetic Activities during Rehydration of Ramalina farinacea Lichen Thalli Provokes Increases in Lipid Peroxidation
Autor: Expósito, Joana R. Martín San Román, Sara Barreno, Eva Reig-Armiñana, José García-Breijo, Francisco-José Catalá, Myriam
Entidad UPV: Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Fecha difusión:
Resumen:
[EN] Lichens are poikilohydrous symbiotic associations between a fungus, photosynthetic partners, and bacteria. They are tolerant to repeated desiccation/rehydration cycles and adapted to anhydrobiosis. Nitric oxide (NO) ...[+]
Palabras clave: Trebouxia , Microalgae , Lipid peroxidation , Diaphorase activity , Lichens , Nitric oxide , Nitrate reductase , Nitric oxide synthase
Derechos de uso: Reconocimiento (by)
Fuente:
Plants. (eissn: 2223-7747 )
DOI: 10.3390/plants8070189
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/plants8070189
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F039/ES/La simbiosis liquénica como asociación mutualista compleja, paradigma de resiliencia en ambientes adversos. Diversidad genómica, estructural y funcional/
info:eu-repo/grantAgreement/MINECO//CGL2016-79158-P/ES/NUEVA PERSPECTIVA INTERDISCIPLINAR SOBRE LA COMPLEJIDAD DE LAS SIMBIOSIS LIQUENICAS: ESTUDIO GENOMICO Y FUNCIONAL DE MICROALGAS Y BACTERIAS/
Agradecimientos:
This research was funded by Ministerio de Economia y Competitividad (MINECO - FEDER, Spain) (CGL2016-79158-P) and Generalitat Valenciana (GVA, Excellence in Research, Spain) (PROMETEOIII/2017/039).
Tipo: Artículo

References

Kranner, I., Beckett, R., Hochman, A., & Nash, T. H. (2008). Desiccation-Tolerance in Lichens: A Review. The Bryologist, 111(4), 576-593. doi:10.1639/0007-2745-111.4.576

Kranner, I., Cram, W. J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E., & Pfeifhofer, H. W. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proceedings of the National Academy of Sciences, 102(8), 3141-3146. doi:10.1073/pnas.0407716102

WILSON, I. D., NEILL, S. J., & HANCOCK, J. T. (2008). Nitric oxide synthesis and signalling in plants. Plant, Cell & Environment, 31(5), 622-631. doi:10.1111/j.1365-3040.2007.01761.x [+]
Kranner, I., Beckett, R., Hochman, A., & Nash, T. H. (2008). Desiccation-Tolerance in Lichens: A Review. The Bryologist, 111(4), 576-593. doi:10.1639/0007-2745-111.4.576

Kranner, I., Cram, W. J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E., & Pfeifhofer, H. W. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proceedings of the National Academy of Sciences, 102(8), 3141-3146. doi:10.1073/pnas.0407716102

WILSON, I. D., NEILL, S. J., & HANCOCK, J. T. (2008). Nitric oxide synthesis and signalling in plants. Plant, Cell & Environment, 31(5), 622-631. doi:10.1111/j.1365-3040.2007.01761.x

Meilhoc, E., Cam, Y., Skapski, A., & Bruand, C. (2010). The Response to Nitric Oxide of the Nitrogen-Fixing Symbiont Sinorhizobium meliloti. Molecular Plant-Microbe Interactions®, 23(6), 748-759. doi:10.1094/mpmi-23-6-0748

Feelisch, M., & Martin, J. F. (1995). The early role of nitric oxide in evolution. Trends in Ecology & Evolution, 10(12), 496-499. doi:10.1016/s0169-5347(00)89206-x

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. doi:10.1016/s1360-1385(02)02312-9

Vranova, E. (2002). Signal transduction during oxidative stress. Journal of Experimental Botany, 53(372), 1227-1236. doi:10.1093/jexbot/53.372.1227

Millar, A. H., & Day, D. A. (1996). Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Letters, 398(2-3), 155-158. doi:10.1016/s0014-5793(96)01230-6

Caro, A., & Puntarulo, S. (1998). Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. Physiologia Plantarum, 104(3), 357-364. doi:10.1034/j.1399-3054.1998.1040310.x

BOVERIS, A. D., GALATRO, A., & PUNTARULO, S. (2000). Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals. Biological Research, 33(2). doi:10.4067/s0716-97602000000200016

Wendehenne, D., & Hancock, J. T. (2011). New frontiers in nitric oxide biology in plant. Plant Science, 181(5), 507-508. doi:10.1016/j.plantsci.2011.07.010

Gupta, K. J., Fernie, A. R., Kaiser, W. M., & van Dongen, J. T. (2011). On the origins of nitric oxide. Trends in Plant Science, 16(3), 160-168. doi:10.1016/j.tplants.2010.11.007

Mallick, N., Mohn, F. H., Soeder, C. J., & Grobbelaar, J. U. (2002). Ameliorative role of nitric oxide on H2O2 toxicity to a chlorophycean alga Scenedesmus obliquus. The Journal of General and Applied Microbiology, 48(1), 1-7. doi:10.2323/jgam.48.1

Chen, K., Feng, H., Zhang, M., & Wang, X. (2003). Nitric oxide alleviates oxidative damage in the green algaChlorella pyrenoidosa caused by UV-B radiation. Folia Microbiologica, 48(3), 389-393. doi:10.1007/bf02931372

Wilken, M., & Huchzermeyer, B. (1999). Suppression of mycelia formation by NO produced endogenously in Candida tropicalis. European Journal of Cell Biology, 78(3), 209-213. doi:10.1016/s0171-9335(99)80100-9

Maier, J., Hecker, R., Rockel, P., & Ninnemann, H. (2001). Role of Nitric Oxide Synthase in the Light-Induced Development of Sporangiophores in Phycomyces blakesleeanus. Plant Physiology, 126(3), 1323-1330. doi:10.1104/pp.126.3.1323

Kong, W., Huang, C., Chen, Q., Zou, Y., & Zhang, J. (2012). Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal Genetics and Biology, 49(1), 15-20. doi:10.1016/j.fgb.2011.12.003

Song, N.-K., Jeong, C.-S., & Choi, H.-S. (2000). Identification of nitric oxide synthase in Flammulina velutipes. Mycologia, 92(6), 1027-1032. doi:10.1080/00275514.2000.12061247

Catalá, M., Gasulla, F., Pradas del Real, A. E., García-Breijo, F., Reig-Armiñana, J., & Barreno, E. (2010). Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis. BMC Microbiology, 10(1), 297. doi:10.1186/1471-2180-10-297

Weissman, L., Garty, J., & Hochman, A. (2005). Rehydration of the Lichen Ramalina lacera Results in Production of Reactive Oxygen Species and Nitric Oxide and a Decrease in Antioxidants. Applied and Environmental Microbiology, 71(4), 2121-2129. doi:10.1128/aem.71.4.2121-2129.2005

Catalá, M., Gasulla, F., Pradas del Real, A. E., García-Breijo, F., Reig-Armiñana, J., & Barreno, E. (2013). The organic air pollutant cumene hydroperoxide interferes with NO antioxidant role in rehydrating lichen. Environmental Pollution, 179, 277-284. doi:10.1016/j.envpol.2013.04.015

Wendehenne, D., Pugin, A., Klessig, D. F., & Durner, J. (2001). Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science, 6(4), 177-183. doi:10.1016/s1360-1385(01)01893-3

Bogdan, C. (2001). Nitric oxide and the regulation of gene expression. Trends in Cell Biology, 11(2), 66-75. doi:10.1016/s0962-8924(00)01900-0

Yamasaki, H., Sakihama, Y., & Takahashi, S. (1999). An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends in Plant Science, 4(4), 128-129. doi:10.1016/s1360-1385(99)01393-x

Berges, J. (1997). Miniview: algal nitrate reductases. European Journal of Phycology, 32(1), 3-8. doi:10.1080/09541449710001719315

Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, Á., Ocaña-Calahorro, F., Mariscal, V., Carreras, A., … Fernández, E. (2016). A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production inChlamydomonas. Plant, Cell & Environment, 39(10), 2097-2107. doi:10.1111/pce.12739

Corpas, F. J., & Barroso, J. B. (2017). Nitric oxide synthase-like activity in higher plants. Nitric Oxide, 68, 5-6. doi:10.1016/j.niox.2016.10.009

Foresi, N., Correa-Aragunde, N., Parisi, G., Caló, G., Salerno, G., & Lamattina, L. (2010). Characterization of a Nitric Oxide Synthase from the Plant Kingdom: NO Generation from the Green Alga Ostreococcus tauri Is Light Irradiance and Growth Phase Dependent    . The Plant Cell, 22(11), 3816-3830. doi:10.1105/tpc.109.073510

Moya, P., Molins, A., Martínez-Alberola, F., Muggia, L., & Barreno, E. (2017). Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLOS ONE, 12(4), e0175091. doi:10.1371/journal.pone.0175091

Cueto, M., Hernández-Perera, O., Martín, R., Bentura, M. L., Rodrigo, J., Lamas, S., & Golvano, M. P. (1996). Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Letters, 398(2-3), 159-164. doi:10.1016/s0014-5793(96)01232-x

Chow, F., Capociama, F. V., Faria, R., & Oliveira, M. C. de. (2007). Characterization of nitrate reductase activity in vitro in Gracilaria caudata J. Agardh (Rhodophyta, Gracilariales). Revista Brasileira de Botânica, 30(1). doi:10.1590/s0100-84042007000100012

Groß, F., Durner, J., & Gaupels, F. (2013). Nitric oxide, antioxidants and prooxidants in plant defence responses. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00419

Xiong, J., Fu, G., Yang, Y., Zhu, C., & Tao, L. (2011). Tungstate: is it really a specific nitrate reductase inhibitor in plant nitric oxide research? Journal of Experimental Botany, 63(1), 33-41. doi:10.1093/jxb/err268

Sakihama, Y., Nakamura, S., & Yamasaki, H. (2002). Nitric Oxide Production Mediated by Nitrate Reductase in the Green Alga Chlamydomonas reinhardtii: an Alternative NO Production Pathway in Photosynthetic Organisms. Plant and Cell Physiology, 43(3), 290-297. doi:10.1093/pcp/pcf034

Mallick, N., Rai, L. C., Mohn, F. H., & Soeder, C. J. (1999). Studies on nitric oxide (NO) formation by the green alga Scenedesmus obliquus and the diazotrophic cyanobacterium Anabaena Doliolum. Chemosphere, 39(10), 1601-1610. doi:10.1016/s0045-6535(99)00058-2

Medina-Andrés, R., Solano-Peralta, A., Saucedo-Vázquez, J. P., Napsucialy-Mendivil, S., Pimentel-Cabrera, J. A., Sosa-Torres, M. E., … Lira-Ruan, V. (2015). The Nitric Oxide Production in the Moss Physcomitrella patens Is Mediated by Nitrate Reductase. PLOS ONE, 10(3), e0119400. doi:10.1371/journal.pone.0119400

Cánovas, D., Marcos, J. F., Marcos, A. T., & Strauss, J. (2016). Nitric oxide in fungi: is there NO light at the end of the tunnel? Current Genetics, 62(3), 513-518. doi:10.1007/s00294-016-0574-6

Slot, J. C., & Hibbett, D. S. (2007). Horizontal Transfer of a Nitrate Assimilation Gene Cluster and Ecological Transitions in Fungi: A Phylogenetic Study. PLoS ONE, 2(10), e1097. doi:10.1371/journal.pone.0001097

Kopincová, J., Púzserová, A., & Bernátová, I. (2012). L-NAME in the cardiovascular system – nitric oxide synthase activator? Pharmacological Reports, 64(3), 511-520. doi:10.1016/s1734-1140(12)70846-0

Gross, B. H., Kreutz, K. J., Osterberg, E. C., McConnell, J. R., Handley, M., Wake, C. P., & Yalcin, K. (2012). Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes. Journal of Geophysical Research: Atmospheres, 117(D16), n/a-n/a. doi:10.1029/2011jd017270

Kim, D., Yamaguchi, K., & Oda, T. (2006). Nitric oxide synthase-like enzyme mediated nitric oxide generation by harmful red tide phytoplankton, Chattonella marina. Journal of Plankton Research, 28(6), 613-620. doi:10.1093/plankt/fbi145

Valentovičová, K., Halušková, L., Huttová, J., Mistrík, I., & Tamás, L. (2010). Effect of cadmium on diaphorase activity and nitric oxide production in barley root tips. Journal of Plant Physiology, 167(1), 10-14. doi:10.1016/j.jplph.2009.06.018

Thomas, T. E., & Harrison, P. J. (1988). A Comparison of In Vitro and In Vivo Nitrate Reductase Assays in Three Intertidal Seaweeds. Botanica Marina, 31(2). doi:10.1515/botm.1988.31.2.101

Granbom, M., Chow, F., Lopes, P. F., de Oliveira, M. C., Colepicolo, P., de Paula, E. J., & Pedersén, M. (2004). Characterisation of nitrate reductase in the marine macroalga Kappaphycus alvarezii (Rhodophyta). Aquatic Botany, 78(4), 295-305. doi:10.1016/j.aquabot.2003.11.001

Lopes, P. F., Oliveira, M. C., & Colepicolo, P. (1997). DIURNAL FLUCTUATION OF NITRATE REDUCTASE ACTIVITY IN THE MARINE RED ALGA GRACILARIA TENUISTIPITATA (RHODOPHYTA)1. Journal of Phycology, 33(2), 225-231. doi:10.1111/j.0022-3646.1997.00225.x

Chow, F., de Oliveira, M. C., & Pedersén, M. (2004). In vitro assay and light regulation of nitrate reductase in red alga Gracilaria chilensis. Journal of Plant Physiology, 161(7), 769-776. doi:10.1016/j.jplph.2004.01.002

Zhao, M.-G., Chen, L., Zhang, L.-L., & Zhang, W.-H. (2009). Nitric Reductase-Dependent Nitric Oxide Production Is Involved in Cold Acclimation and Freezing Tolerance in Arabidopsis. Plant Physiology, 151(2), 755-767. doi:10.1104/pp.109.140996

Hwang, S.-P. L., Williams, S. L., & Brinkhuis, B. H. (1987). Changes in Internal Dissolved Nitrogen Pools as Related to Nitrate Uptake and Assimilation in Gracilaria tikvahiae McLachlan (Rhodophyta)). Botanica Marina, 30(1). doi:10.1515/botm.1987.30.1.11

Berges, J. A., & Harrison, P. J. (1995). Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation: A revised assay and characterization of the enzyme in three species of marine phytoplankton. Limnology and Oceanography, 40(1), 82-93. doi:10.4319/lo.1995.40.1.0082

Botsoglou, N. A., Fletouris, D. J., Papageorgiou, G. E., Vassilopoulos, V. N., Mantis, A. J., & Trakatellis, A. G. (1994). Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. Journal of Agricultural and Food Chemistry, 42(9), 1931-1937. doi:10.1021/jf00045a019

Du, Z., & Bramlage, W. J. (1992). Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry, 40(9), 1566-1570. doi:10.1021/jf00021a018

Reilly, C. A., & Aust, S. D. (1999). Measurement of Lipid Peroxidation. Current Protocols in Toxicology, 00(1). doi:10.1002/0471140856.tx0204s00

Nussler, A. K., Glanemann, M., Schirmeier, A., Liu, L., & Nüssler, N. C. (2006). Fluorometric measurement of nitrite/nitrate by 2,3-diaminonaphthalene. Nature Protocols, 1(5), 2223-2226. doi:10.1038/nprot.2006.341

Hope, B. T., & Vincent, S. R. (1989). Histochemical characterization of neuronal NADPH-diaphorase. Journal of Histochemistry & Cytochemistry, 37(5), 653-661. doi:10.1177/37.5.2703701

Hope, B. T., Michael, G. J., Knigge, K. M., & Vincent, S. R. (1991). Neuronal NADPH diaphorase is a nitric oxide synthase. Proceedings of the National Academy of Sciences, 88(7), 2811-2814. doi:10.1073/pnas.88.7.2811

Griess, P. (1879). Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt „Ueber einige Azoverbindungen”. Berichte der deutschen chemischen Gesellschaft, 12(1), 426-428. doi:10.1002/cber.187901201117

Chaki, M., Valderrama, R., Fernández-Ocaña, A. M., Carreras, A., Gómez-Rodríguez, M. V., Pedrajas, J. R., … Barroso, J. B. (2010). Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. Journal of Experimental Botany, 62(6), 1803-1813. doi:10.1093/jxb/erq358

Noble, J. E., & Bailey, M. J. A. (2009). Chapter 8 Quantitation of Protein. Guide to Protein Purification, 2nd Edition, 73-95. doi:10.1016/s0076-6879(09)63008-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem