Gironi, F., & Piemonte, V. (2010). Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environmental Progress & Sustainable Energy, 30(3), 459-468. doi:10.1002/ep.10490
Hoppe, W., Thonemann, N., & Bringezu, S. (2017). Life Cycle Assessment of Carbon Dioxide-Based Production of Methane and Methanol and Derived Polymers. Journal of Industrial Ecology, 22(2), 327-340. doi:10.1111/jiec.12583
Luján-Ornelas, C., Mancebo del C. Sternenfels, U., & Güereca, L. P. (2018). Life cycle assessment of Mexican polymer and high-durability cotton paper banknotes. Science of The Total Environment, 630, 409-421. doi:10.1016/j.scitotenv.2018.02.177
[+]
Gironi, F., & Piemonte, V. (2010). Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environmental Progress & Sustainable Energy, 30(3), 459-468. doi:10.1002/ep.10490
Hoppe, W., Thonemann, N., & Bringezu, S. (2017). Life Cycle Assessment of Carbon Dioxide-Based Production of Methane and Methanol and Derived Polymers. Journal of Industrial Ecology, 22(2), 327-340. doi:10.1111/jiec.12583
Luján-Ornelas, C., Mancebo del C. Sternenfels, U., & Güereca, L. P. (2018). Life cycle assessment of Mexican polymer and high-durability cotton paper banknotes. Science of The Total Environment, 630, 409-421. doi:10.1016/j.scitotenv.2018.02.177
Vidal, R., Moliner, E., Martin, P. P., Fita, S., Wonneberger, M., Verdejo, E., … González, A. (2017). Life Cycle Assessment of Novel Aircraft Interior Panels Made from Renewable or Recyclable Polymers with Natural Fiber Reinforcements and Non-Halogenated Flame Retardants. Journal of Industrial Ecology, 22(1), 132-144. doi:10.1111/jiec.12544
Kijchavengkul, T., Auras, R., Rubino, M., Selke, S., Ngouajio, M., & Fernandez, R. T. (2010). Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polymer Degradation and Stability, 95(12), 2641-2647. doi:10.1016/j.polymdegradstab.2010.07.018
Borovikov, P. I., Sviridov, A. P., Antonov, E. N., Dunaev, A. G., Krotova, L. I., Fatkhudinov, T. K., & Popov, V. K. (2019). Model of aliphatic polyesters hydrolysis comprising water and oligomers diffusion. Polymer Degradation and Stability, 159, 70-78. doi:10.1016/j.polymdegradstab.2018.11.017
Han, S.-I., Yoo, Y., Kim, D. K., & Im, S. S. (2004). Biodegradable Aliphatic Polyester Ionomers. Macromolecular Bioscience, 4(3), 199-207. doi:10.1002/mabi.200300095
Li, Y., Liao, C., & Tjong, S. C. (2019). Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications. Nanomaterials, 9(4), 590. doi:10.3390/nano9040590
Sekiguchi, T., Saika, A., Nomura, K., Watanabe, T., Watanabe, T., Fujimoto, Y., … Kanehiro, H. (2011). Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly(ɛ-caprolactone)-degrading bacteria. Polymer Degradation and Stability, 96(7), 1397-1403. doi:10.1016/j.polymdegradstab.2011.03.004
Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica
seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042
Montanes, N., Garcia-Sanoguera, D., Segui, V. J., Fenollar, O., & Boronat, T. (2017). Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs. Journal of Polymers and the Environment, 26(3), 1218-1230. doi:10.1007/s10924-017-1025-2
Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348
Quiles-Carrillo, L., Boronat, T., Montanes, N., Balart, R., & Torres-Giner, S. (2019). Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents. Polymer Testing, 77, 105875. doi:10.1016/j.polymertesting.2019.04.022
Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004
Abedini, F., Ebrahimi, M., Roozbehani, A. H., Domb, A. J., & Hosseinkhani, H. (2018). Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polymers for Advanced Technologies, 29(10), 2564-2573. doi:10.1002/pat.4375
Gandini, A., Lacerda, T. M., Carvalho, A. J. F., & Trovatti, E. (2015). Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Reviews, 116(3), 1637-1669. doi:10.1021/acs.chemrev.5b00264
Jagadeesh, D., Kanny, K., & Prashantha, K. (2015). A review on research and development of green composites from plant protein-based polymers. Polymer Composites, 38(8), 1504-1518. doi:10.1002/pc.23718
Rai, K., Sun, Y., Shaliutina-Kolesova, A., Nian, R., & Xian, M. (2018). Proteins: Natural Polymers for Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 8(3), 295-308. doi:10.1166/jbt.2018.1753
Werten, M. W. T., Eggink, G., Cohen Stuart, M. A., & de Wolf, F. A. (2019). Production of protein-based polymers in Pichia pastoris. Biotechnology Advances, 37(5), 642-666. doi:10.1016/j.biotechadv.2019.03.012
Elmowafy, E., Abdal-Hay, A., Skouras, A., Tiboni, M., Casettari, L., & Guarino, V. (2019). Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Review of Medical Devices, 16(6), 467-482. doi:10.1080/17434440.2019.1615439
Partini, M., & Pantani, R. (2007). FTIR analysis of hydrolysis in aliphatic polyesters. Polymer Degradation and Stability, 92(8), 1491-1497. doi:10.1016/j.polymdegradstab.2007.05.009
Wang, D. K., Varanasi, S., Fredericks, P. M., Hill, D. J. T., Symons, A. L., Whittaker, A. K., & Rasoul, F. (2013). FT-IR characterization and hydrolysis of PLA-PEG-PLA based copolyester hydrogels with short PLA segments and a cytocompatibility study. Journal of Polymer Science Part A: Polymer Chemistry, 51(24), 5163-5176. doi:10.1002/pola.26930
Li, Y., Chu, Z., Li, X., Ding, X., Guo, M., Zhao, H., … Fan, Y. (2017). The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters. Regenerative Biomaterials, 4(3), 179-190. doi:10.1093/rb/rbx009
Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031
Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017
Yanfang, C., Jiayi, X., Qinggang, T., Zhenlei, Z., Jun, Z., Xiaoyan, X., & Yan, L. (2019). End-Group Functionalization of Polyethylene Glycol-Polylactic Acid Copolymer and Its Application in the Field of Pharmaceutical Carriers. Journal of Biobased Materials and Bioenergy, 13(5), 690-698. doi:10.1166/jbmb.2019.1900
Nguyen, T.-H., Tangboriboonrat, P., Rattanasom, N., Petchsuk, A., Opaprakasit, M., Thammawong, C., & Opaprakasit, P. (2011). Polylactic acid/ethylene glycol triblock copolymer as novel crosslinker for epoxidized natural rubber. Journal of Applied Polymer Science, 124(1), 164-174. doi:10.1002/app.35088
Sun, R., Du, X.-J., Sun, C.-Y., Shen, S., Liu, Y., Yang, X.-Z., … Wang, J. (2015). A block copolymer of zwitterionic polyphosphoester and polylactic acid for drug delivery. Biomaterials Science, 3(7), 1105-1113. doi:10.1039/c4bm00430b
Anjos, A. L. V. dos, Perez, R. C., Braga, B. M., Matsumoto, M. A., Okamoto, R. O., Saraiva, P. P., … Pegoraro, T. A. (2017). Polylactic/polyglycolic acid copolymer is a good carrier for bmp-2 on bone regeneration? Bioscience Journal, 815-823. doi:10.14393/bj-v33n3-38449
Fairag, R., Rosenzweig, D. H., Ramirez-Garcialuna, J. L., Weber, M. H., & Haglund, L. (2019). Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro. ACS Applied Materials & Interfaces, 11(17), 15306-15315. doi:10.1021/acsami.9b02502
Miclaus, R., Repanovici, A., & Roman, N. (2017). Biomaterials: Polylactic Acid and 3D Printing Processes for Orthosis and Prosthesis. Materiale Plastice, 54(1), 98-102. doi:10.37358/mp.17.1.4794
Zhang, H., Mao, X., Zhao, D., Jiang, W., Du, Z., Li, Q., … Han, D. (2017). Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: An in vivo bioreactor model. Scientific Reports, 7(1). doi:10.1038/s41598-017-14923-7
Coulembier, O., Degée, P., Hedrick, J. L., & Dubois, P. (2006). From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(β-malic acid) derivatives. Progress in Polymer Science, 31(8), 723-747. doi:10.1016/j.progpolymsci.2006.08.004
Mazzanti, V., Malagutti, L., & Mollica, F. (2019). FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers, 11(7), 1094. doi:10.3390/polym11071094
Zhao, P., Rao, C., Gu, F., Sharmin, N., & Fu, J. (2018). Close-looped recycling of polylactic acid used in 3D printing: An experimental investigation and life cycle assessment. Journal of Cleaner Production, 197, 1046-1055. doi:10.1016/j.jclepro.2018.06.275
Liu, Z., Wang, Y., Wu, B., Cui, C., Guo, Y., & Yan, C. (2019). A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. The International Journal of Advanced Manufacturing Technology, 102(9-12), 2877-2889. doi:10.1007/s00170-019-03332-x
Matos, B. D. M., Rocha, V., da Silva, E. J., Moro, F. H., Bottene, A. C., Ribeiro, C. A., … Silva Barud, H. da. (2018). Evaluation of commercially available polylactic acid (PLA) filaments for 3D printing applications. Journal of Thermal Analysis and Calorimetry, 137(2), 555-562. doi:10.1007/s10973-018-7967-3
Kamthai, S., & Magaraphan, R. (2018). Development of an active polylactic acid (PLA) packaging film by adding bleached bagasse carboxymethyl cellulose (CMCB) for mango storage life extension. Packaging Technology and Science, 32(2), 103-116. doi:10.1002/pts.2420
Marra, A., Silvestre, C., Duraccio, D., & Cimmino, S. (2016). Polylactic acid/zinc oxide biocomposite films for food packaging application. International Journal of Biological Macromolecules, 88, 254-262. doi:10.1016/j.ijbiomac.2016.03.039
Masmoudi, F., Bessadok, A., Dammak, M., Jaziri, M., & Ammar, E. (2016). Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose. Environmental Science and Pollution Research, 23(20), 20904-20914. doi:10.1007/s11356-016-7276-y
Åkesson, D., Vrignaud, T., Tissot, C., & Skrifvars, M. (2016). Mechanical Recycling of PLA Filled with a High Level of Cellulose Fibres. Journal of Polymers and the Environment, 24(3), 185-195. doi:10.1007/s10924-016-0760-0
Cristina, A. M., Sara, F., Fausto, G., Vincenzo, P., Rocchina, S., & Claudio, V. (2018). Degradation of Post-consumer PLA: Hydrolysis of Polymeric Matrix and Oligomers Stabilization in Aqueous Phase. Journal of Polymers and the Environment, 26(12), 4396-4404. doi:10.1007/s10924-018-1312-6
Karst, D., & Yang, Y. (2006). Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA. Polymer, 47(13), 4845-4850. doi:10.1016/j.polymer.2006.05.002
Najafi, N., Heuzey, M. C., & Carreau, P. J. (2012). Crystallization behavior and morphology of polylactide and PLA/clay nanocomposites in the presence of chain extenders. Polymer Engineering & Science, 53(5), 1053-1064. doi:10.1002/pen.23355
Palsikowski, P. A., Kuchnier, C. N., Pinheiro, I. F., & Morales, A. R. (2017). Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. Journal of Polymers and the Environment, 26(1), 330-341. doi:10.1007/s10924-017-0951-3
Stloukal, P., Kalendova, A., Mattausch, H., Laske, S., Holzer, C., & Koutny, M. (2015). The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polymer Testing, 41, 124-132. doi:10.1016/j.polymertesting.2014.10.015
Tanaka, M., Atsumi, K., Onodera, M., Saito, H., & Kimpara, I. (2014). Hydrolysis control by introduction of photodissociable protecting groups in PLA as matrix of green composite materials. Advanced Composite Materials, 23(5-6), 521-534. doi:10.1080/09243046.2014.915117
Åkesson, D., Fazelinejad, S., Skrifvars, V.-V., & Skrifvars, M. (2016). Mechanical recycling of polylactic acid composites reinforced with wood fibres by multiple extrusion and hydrothermal ageing. Journal of Reinforced Plastics and Composites, 35(16), 1248-1259. doi:10.1177/0731684416647507
Fazelinejad, S., Åkesson, D., & Skrifvars, M. (2017). Repeated Mechanical Recycling of Polylactic Acid Filled with Chalk. Progress in Rubber, Plastics and Recycling Technology, 33(1), 1-16. doi:10.1177/147776061703300101
Hamad, K., Kaseem, M., & Deri, F. (2010). Effect of recycling on rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. Journal of Materials Science, 46(9), 3013-3019. doi:10.1007/s10853-010-5179-8
Baimark, Y., & Srihanam, P. (2015). Influence of chain extender on thermal properties and melt flow index of stereocomplex PLA. Polymer Testing, 45, 52-57. doi:10.1016/j.polymertesting.2015.04.017
Freitas, A. L. P. de L., Tonini Filho, L. R., Calvão, P. S., & Souza, A. M. C. de. (2017). Effect of montmorillonite and chain extender on rheological, morphological and biodegradation behavior of PLA/PBAT blends. Polymer Testing, 62, 189-195. doi:10.1016/j.polymertesting.2017.06.030
Hachana, N., Wongwanchai, T., Chaochanchaikul, K., & Harnnarongchai, W. (2016). Influence of Crosslinking Agent and Chain Extender on Properties of Gamma-Irradiated PLA. Journal of Polymers and the Environment, 25(2), 323-333. doi:10.1007/s10924-016-0812-5
Tochacek, J., & Jancar, J. (2012). Processing degradation index (PDI) – A quantitative measure of processing stability of polypropylene. Polymer Testing, 31(8), 1115-1120. doi:10.1016/j.polymertesting.2012.08.004
Gonzalez, L., Agüero, A., Quiles-Carrillo, L., Lascano, D., & Montanes, N. (2019). Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials, 12(10), 1627. doi:10.3390/ma12101627
Stencel, R., Kasperski, J., Pakieła, W., Mertas, A., Bobela, E., Barszczewska-Rybarek, I., & Chladek, G. (2018). Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler. Materials, 11(6), 1031. doi:10.3390/ma11061031
Simmons, H., & Kontopoulou, M. (2018). Hydrolytic degradation of branched PLA produced by reactive extrusion. Polymer Degradation and Stability, 158, 228-237. doi:10.1016/j.polymdegradstab.2018.11.006
Oromiehie, A., & Mamizadeh, A. (2004). Recycling PET beverage bottles and improving properties. Polymer International, 53(6), 728-732. doi:10.1002/pi.1389
Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079
Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329
Lascano, D., Quiles-Carrillo, L., Balart, R., Boronat, T., & Montanes, N. (2019). Toughened Poly(Lactic Acid)—PLA Formulations by Binary Blends with Poly(Butylene Succinate-co-Adipate)—PBSA and Their Shape Memory Behaviour. Materials, 12(4), 622. doi:10.3390/ma12040622
Yarahmadi, N., Jakubowicz, I., & Enebro, J. (2016). Polylactic acid and its blends with petroleum-based resins: Effects of reprocessing and recycling on properties. Journal of Applied Polymer Science, 133(36). doi:10.1002/app.43916
Qi, H. J., Joyce, K., & Boyce, M. C. (2003). Durometer Hardness and the Stress-Strain Behavior of Elastomeric Materials. Rubber Chemistry and Technology, 76(2), 419-435. doi:10.5254/1.3547752
Graupner, N., Albrecht, K., Ziegmann, G., Enzler, H., & Muessig, J. (2016). Influence of reprocessing on fibre length distribution, tensile strength and impact strength of injection moulded cellulose fibre-reinforced polylactide (PLA) composites. Express Polymer Letters, 10(8), 647-663. doi:10.3144/expresspolymlett.2016.59
Awale, R., Ali, F., Azmi, A., Puad, N., Anuar, H., & Hassan, A. (2018). Enhanced Flexibility of Biodegradable Polylactic Acid/Starch Blends Using Epoxidized Palm Oil as Plasticizer. Polymers, 10(9), 977. doi:10.3390/polym10090977
Sharma, S., Singh, A. A., Majumdar, A., & Butola, B. S. (2019). Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process. Journal of Materials Science, 54(12), 8971-8983. doi:10.1007/s10853-019-03521-9
Tocháček, J., Jančář, J., Kalfus, J., Zbořilová, P., & Buráň, Z. (2008). Degradation of polypropylene impact-copolymer during processing. Polymer Degradation and Stability, 93(4), 770-775. doi:10.1016/j.polymdegradstab.2008.01.027
La Mantia, F. P., & Correnti, A. (2003). Effect of Processing Conditions on the Degradation and on the Recycling of Polycarbonate. Progress in Rubber, Plastics and Recycling Technology, 19(3), 135-142. doi:10.1177/147776060301900301
Papageorgiou, G. Z., Beslikas, T., Gigis, J., Christoforides, J., & Bikiaris, D. N. (2010). Crystallization and enzymatic hydrolysis of PLA grade for orthopedics. Advances in Polymer Technology, 29(4), 280-299. doi:10.1002/adv.20194
Aguero, A., Quiles‐Carrillo, L., Jorda‐Vilaplana, A., Fenollar, O., & Montanes, N. (2019). Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International, 68(5), 893-903. doi:10.1002/pi.5779
Signori, F., Coltelli, M.-B., & Bronco, S. (2009). Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation and Stability, 94(1), 74-82. doi:10.1016/j.polymdegradstab.2008.10.004
Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus, 2(1). doi:10.1186/2193-1801-2-398
Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. doi:10.1016/j.polymdegradstab.2009.11.045
Garancher, J.-P., & Fernyhough, A. (2014). Expansion and dimensional stability of semi-crystalline polylactic acid foams. Polymer Degradation and Stability, 100, 21-28. doi:10.1016/j.polymdegradstab.2013.12.037
[-]