- -

Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Agüero, Ángel es_ES
dc.contributor.author Morcillo, Maria del Carmen es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Boronat, Teodomiro es_ES
dc.contributor.author Lascano-Aimacaña, Diego Sebastián es_ES
dc.contributor.author Torres-Giner, Sergio es_ES
dc.contributor.author Fenollar, Octavio es_ES
dc.date.accessioned 2021-01-30T04:31:43Z
dc.date.available 2021-01-30T04:31:43Z
dc.date.issued 2019-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160304
dc.description.abstract [EN] This research work aims to study the influence of the reprocessing cycles on the mechanical, thermal, and thermomechanical properties of polylactide (PLA). To this end, PLA was subjected to as many as six extrusion cycles and the resultant pellets were shaped into pieces by injection molding. Mechanical characterization revealed that the PLA pieces presented relatively similar properties up to the third reprocessing cycle, whereas further cycles induced an intense reduction in ductility and toughness. The effect of the reprocessing cycles was also studied by the changes in the melt fluidity, which showed a significant increase after four reprocessing cycles. An increase in the bio-polyester chain mobility was also attained with the number of the reprocessing cycles that subsequently favored an increase in crystallinity of PLA. A visual inspection indicated that PLA developed certain yellowing and the pieces also became less transparent with the increasing number of reprocessing cycles. Therefore, the obtained results showed that PLA suffers a slight degradation after one or two reprocessing cycles whereas performance impairment becomes more evident above the fourth reprocessing cycle. This finding suggests that the mechanical recycling of PLA for up to three cycles of extrusion and subsequent injection molding is technically feasible. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. L. Quiles-Carrillo wants to thank GV for his FPI grant (ACIF/2016/182) and MECD for his FPU grant (FPU15/03812). D. Lascano wants to thank UPV for the grant received through the PAID-01-18 program. S. Torres-Giner is recipient of a Juan de la Cierva¿ Incorporación contract (IJCI-2016-29675) from MICIU. Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PLA es_ES
dc.subject Extrusion cycles es_ES
dc.subject Injection molding es_ES
dc.subject Mechanical recycling es_ES
dc.subject Circular economy es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym11121908 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Agüero, Á.; Morcillo, MDC.; Quiles-Carrillo, L.; Balart, R.; Boronat, T.; Lascano-Aimacaña, DS.; Torres-Giner, S.... (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers. 11(12):1-20. https://doi.org/10.3390/polym11121908 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym11121908 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 31756897 es_ES
dc.identifier.pmcid PMC6960523 es_ES
dc.relation.pasarela S\397693 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Gironi, F., & Piemonte, V. (2010). Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environmental Progress & Sustainable Energy, 30(3), 459-468. doi:10.1002/ep.10490 es_ES
dc.description.references Hoppe, W., Thonemann, N., & Bringezu, S. (2017). Life Cycle Assessment of Carbon Dioxide-Based Production of Methane and Methanol and Derived Polymers. Journal of Industrial Ecology, 22(2), 327-340. doi:10.1111/jiec.12583 es_ES
dc.description.references Luján-Ornelas, C., Mancebo del C. Sternenfels, U., & Güereca, L. P. (2018). Life cycle assessment of Mexican polymer and high-durability cotton paper banknotes. Science of The Total Environment, 630, 409-421. doi:10.1016/j.scitotenv.2018.02.177 es_ES
dc.description.references Vidal, R., Moliner, E., Martin, P. P., Fita, S., Wonneberger, M., Verdejo, E., … González, A. (2017). Life Cycle Assessment of Novel Aircraft Interior Panels Made from Renewable or Recyclable Polymers with Natural Fiber Reinforcements and Non-Halogenated Flame Retardants. Journal of Industrial Ecology, 22(1), 132-144. doi:10.1111/jiec.12544 es_ES
dc.description.references Kijchavengkul, T., Auras, R., Rubino, M., Selke, S., Ngouajio, M., & Fernandez, R. T. (2010). Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polymer Degradation and Stability, 95(12), 2641-2647. doi:10.1016/j.polymdegradstab.2010.07.018 es_ES
dc.description.references Borovikov, P. I., Sviridov, A. P., Antonov, E. N., Dunaev, A. G., Krotova, L. I., Fatkhudinov, T. K., & Popov, V. K. (2019). Model of aliphatic polyesters hydrolysis comprising water and oligomers diffusion. Polymer Degradation and Stability, 159, 70-78. doi:10.1016/j.polymdegradstab.2018.11.017 es_ES
dc.description.references Han, S.-I., Yoo, Y., Kim, D. K., & Im, S. S. (2004). Biodegradable Aliphatic Polyester Ionomers. Macromolecular Bioscience, 4(3), 199-207. doi:10.1002/mabi.200300095 es_ES
dc.description.references Li, Y., Liao, C., & Tjong, S. C. (2019). Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications. Nanomaterials, 9(4), 590. doi:10.3390/nano9040590 es_ES
dc.description.references Sekiguchi, T., Saika, A., Nomura, K., Watanabe, T., Watanabe, T., Fujimoto, Y., … Kanehiro, H. (2011). Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly(ɛ-caprolactone)-degrading bacteria. Polymer Degradation and Stability, 96(7), 1397-1403. doi:10.1016/j.polymdegradstab.2011.03.004 es_ES
dc.description.references Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042 es_ES
dc.description.references Montanes, N., Garcia-Sanoguera, D., Segui, V. J., Fenollar, O., & Boronat, T. (2017). Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs. Journal of Polymers and the Environment, 26(3), 1218-1230. doi:10.1007/s10924-017-1025-2 es_ES
dc.description.references Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348 es_ES
dc.description.references Quiles-Carrillo, L., Boronat, T., Montanes, N., Balart, R., & Torres-Giner, S. (2019). Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents. Polymer Testing, 77, 105875. doi:10.1016/j.polymertesting.2019.04.022 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004 es_ES
dc.description.references Abedini, F., Ebrahimi, M., Roozbehani, A. H., Domb, A. J., & Hosseinkhani, H. (2018). Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polymers for Advanced Technologies, 29(10), 2564-2573. doi:10.1002/pat.4375 es_ES
dc.description.references Gandini, A., Lacerda, T. M., Carvalho, A. J. F., & Trovatti, E. (2015). Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Reviews, 116(3), 1637-1669. doi:10.1021/acs.chemrev.5b00264 es_ES
dc.description.references Jagadeesh, D., Kanny, K., & Prashantha, K. (2015). A review on research and development of green composites from plant protein-based polymers. Polymer Composites, 38(8), 1504-1518. doi:10.1002/pc.23718 es_ES
dc.description.references Rai, K., Sun, Y., Shaliutina-Kolesova, A., Nian, R., & Xian, M. (2018). Proteins: Natural Polymers for Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 8(3), 295-308. doi:10.1166/jbt.2018.1753 es_ES
dc.description.references Werten, M. W. T., Eggink, G., Cohen Stuart, M. A., & de Wolf, F. A. (2019). Production of protein-based polymers in Pichia pastoris. Biotechnology Advances, 37(5), 642-666. doi:10.1016/j.biotechadv.2019.03.012 es_ES
dc.description.references Elmowafy, E., Abdal-Hay, A., Skouras, A., Tiboni, M., Casettari, L., & Guarino, V. (2019). Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Review of Medical Devices, 16(6), 467-482. doi:10.1080/17434440.2019.1615439 es_ES
dc.description.references Partini, M., & Pantani, R. (2007). FTIR analysis of hydrolysis in aliphatic polyesters. Polymer Degradation and Stability, 92(8), 1491-1497. doi:10.1016/j.polymdegradstab.2007.05.009 es_ES
dc.description.references Wang, D. K., Varanasi, S., Fredericks, P. M., Hill, D. J. T., Symons, A. L., Whittaker, A. K., & Rasoul, F. (2013). FT-IR characterization and hydrolysis of PLA-PEG-PLA based copolyester hydrogels with short PLA segments and a cytocompatibility study. Journal of Polymer Science Part A: Polymer Chemistry, 51(24), 5163-5176. doi:10.1002/pola.26930 es_ES
dc.description.references Li, Y., Chu, Z., Li, X., Ding, X., Guo, M., Zhao, H., … Fan, Y. (2017). The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters. Regenerative Biomaterials, 4(3), 179-190. doi:10.1093/rb/rbx009 es_ES
dc.description.references Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Yanfang, C., Jiayi, X., Qinggang, T., Zhenlei, Z., Jun, Z., Xiaoyan, X., & Yan, L. (2019). End-Group Functionalization of Polyethylene Glycol-Polylactic Acid Copolymer and Its Application in the Field of Pharmaceutical Carriers. Journal of Biobased Materials and Bioenergy, 13(5), 690-698. doi:10.1166/jbmb.2019.1900 es_ES
dc.description.references Nguyen, T.-H., Tangboriboonrat, P., Rattanasom, N., Petchsuk, A., Opaprakasit, M., Thammawong, C., & Opaprakasit, P. (2011). Polylactic acid/ethylene glycol triblock copolymer as novel crosslinker for epoxidized natural rubber. Journal of Applied Polymer Science, 124(1), 164-174. doi:10.1002/app.35088 es_ES
dc.description.references Sun, R., Du, X.-J., Sun, C.-Y., Shen, S., Liu, Y., Yang, X.-Z., … Wang, J. (2015). A block copolymer of zwitterionic polyphosphoester and polylactic acid for drug delivery. Biomaterials Science, 3(7), 1105-1113. doi:10.1039/c4bm00430b es_ES
dc.description.references Anjos, A. L. V. dos, Perez, R. C., Braga, B. M., Matsumoto, M. A., Okamoto, R. O., Saraiva, P. P., … Pegoraro, T. A. (2017). Polylactic/polyglycolic acid copolymer is a good carrier for bmp-2 on bone regeneration? Bioscience Journal, 815-823. doi:10.14393/bj-v33n3-38449 es_ES
dc.description.references Fairag, R., Rosenzweig, D. H., Ramirez-Garcialuna, J. L., Weber, M. H., & Haglund, L. (2019). Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro. ACS Applied Materials & Interfaces, 11(17), 15306-15315. doi:10.1021/acsami.9b02502 es_ES
dc.description.references Miclaus, R., Repanovici, A., & Roman, N. (2017). Biomaterials: Polylactic Acid and 3D Printing Processes for Orthosis and Prosthesis. Materiale Plastice, 54(1), 98-102. doi:10.37358/mp.17.1.4794 es_ES
dc.description.references Zhang, H., Mao, X., Zhao, D., Jiang, W., Du, Z., Li, Q., … Han, D. (2017). Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: An in vivo bioreactor model. Scientific Reports, 7(1). doi:10.1038/s41598-017-14923-7 es_ES
dc.description.references Coulembier, O., Degée, P., Hedrick, J. L., & Dubois, P. (2006). From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(β-malic acid) derivatives. Progress in Polymer Science, 31(8), 723-747. doi:10.1016/j.progpolymsci.2006.08.004 es_ES
dc.description.references Mazzanti, V., Malagutti, L., & Mollica, F. (2019). FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers, 11(7), 1094. doi:10.3390/polym11071094 es_ES
dc.description.references Zhao, P., Rao, C., Gu, F., Sharmin, N., & Fu, J. (2018). Close-looped recycling of polylactic acid used in 3D printing: An experimental investigation and life cycle assessment. Journal of Cleaner Production, 197, 1046-1055. doi:10.1016/j.jclepro.2018.06.275 es_ES
dc.description.references Liu, Z., Wang, Y., Wu, B., Cui, C., Guo, Y., & Yan, C. (2019). A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. The International Journal of Advanced Manufacturing Technology, 102(9-12), 2877-2889. doi:10.1007/s00170-019-03332-x es_ES
dc.description.references Matos, B. D. M., Rocha, V., da Silva, E. J., Moro, F. H., Bottene, A. C., Ribeiro, C. A., … Silva Barud, H. da. (2018). Evaluation of commercially available polylactic acid (PLA) filaments for 3D printing applications. Journal of Thermal Analysis and Calorimetry, 137(2), 555-562. doi:10.1007/s10973-018-7967-3 es_ES
dc.description.references Kamthai, S., & Magaraphan, R. (2018). Development of an active polylactic acid (PLA) packaging film by adding bleached bagasse carboxymethyl cellulose (CMCB) for mango storage life extension. Packaging Technology and Science, 32(2), 103-116. doi:10.1002/pts.2420 es_ES
dc.description.references Marra, A., Silvestre, C., Duraccio, D., & Cimmino, S. (2016). Polylactic acid/zinc oxide biocomposite films for food packaging application. International Journal of Biological Macromolecules, 88, 254-262. doi:10.1016/j.ijbiomac.2016.03.039 es_ES
dc.description.references Masmoudi, F., Bessadok, A., Dammak, M., Jaziri, M., & Ammar, E. (2016). Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose. Environmental Science and Pollution Research, 23(20), 20904-20914. doi:10.1007/s11356-016-7276-y es_ES
dc.description.references Åkesson, D., Vrignaud, T., Tissot, C., & Skrifvars, M. (2016). Mechanical Recycling of PLA Filled with a High Level of Cellulose Fibres. Journal of Polymers and the Environment, 24(3), 185-195. doi:10.1007/s10924-016-0760-0 es_ES
dc.description.references Cristina, A. M., Sara, F., Fausto, G., Vincenzo, P., Rocchina, S., & Claudio, V. (2018). Degradation of Post-consumer PLA: Hydrolysis of Polymeric Matrix and Oligomers Stabilization in Aqueous Phase. Journal of Polymers and the Environment, 26(12), 4396-4404. doi:10.1007/s10924-018-1312-6 es_ES
dc.description.references Karst, D., & Yang, Y. (2006). Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA. Polymer, 47(13), 4845-4850. doi:10.1016/j.polymer.2006.05.002 es_ES
dc.description.references Najafi, N., Heuzey, M. C., & Carreau, P. J. (2012). Crystallization behavior and morphology of polylactide and PLA/clay nanocomposites in the presence of chain extenders. Polymer Engineering & Science, 53(5), 1053-1064. doi:10.1002/pen.23355 es_ES
dc.description.references Palsikowski, P. A., Kuchnier, C. N., Pinheiro, I. F., & Morales, A. R. (2017). Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. Journal of Polymers and the Environment, 26(1), 330-341. doi:10.1007/s10924-017-0951-3 es_ES
dc.description.references Stloukal, P., Kalendova, A., Mattausch, H., Laske, S., Holzer, C., & Koutny, M. (2015). The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polymer Testing, 41, 124-132. doi:10.1016/j.polymertesting.2014.10.015 es_ES
dc.description.references Tanaka, M., Atsumi, K., Onodera, M., Saito, H., & Kimpara, I. (2014). Hydrolysis control by introduction of photodissociable protecting groups in PLA as matrix of green composite materials. Advanced Composite Materials, 23(5-6), 521-534. doi:10.1080/09243046.2014.915117 es_ES
dc.description.references Åkesson, D., Fazelinejad, S., Skrifvars, V.-V., & Skrifvars, M. (2016). Mechanical recycling of polylactic acid composites reinforced with wood fibres by multiple extrusion and hydrothermal ageing. Journal of Reinforced Plastics and Composites, 35(16), 1248-1259. doi:10.1177/0731684416647507 es_ES
dc.description.references Fazelinejad, S., Åkesson, D., & Skrifvars, M. (2017). Repeated Mechanical Recycling of Polylactic Acid Filled with Chalk. Progress in Rubber, Plastics and Recycling Technology, 33(1), 1-16. doi:10.1177/147776061703300101 es_ES
dc.description.references Hamad, K., Kaseem, M., & Deri, F. (2010). Effect of recycling on rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. Journal of Materials Science, 46(9), 3013-3019. doi:10.1007/s10853-010-5179-8 es_ES
dc.description.references Baimark, Y., & Srihanam, P. (2015). Influence of chain extender on thermal properties and melt flow index of stereocomplex PLA. Polymer Testing, 45, 52-57. doi:10.1016/j.polymertesting.2015.04.017 es_ES
dc.description.references Freitas, A. L. P. de L., Tonini Filho, L. R., Calvão, P. S., & Souza, A. M. C. de. (2017). Effect of montmorillonite and chain extender on rheological, morphological and biodegradation behavior of PLA/PBAT blends. Polymer Testing, 62, 189-195. doi:10.1016/j.polymertesting.2017.06.030 es_ES
dc.description.references Hachana, N., Wongwanchai, T., Chaochanchaikul, K., & Harnnarongchai, W. (2016). Influence of Crosslinking Agent and Chain Extender on Properties of Gamma-Irradiated PLA. Journal of Polymers and the Environment, 25(2), 323-333. doi:10.1007/s10924-016-0812-5 es_ES
dc.description.references Tochacek, J., & Jancar, J. (2012). Processing degradation index (PDI) – A quantitative measure of processing stability of polypropylene. Polymer Testing, 31(8), 1115-1120. doi:10.1016/j.polymertesting.2012.08.004 es_ES
dc.description.references Gonzalez, L., Agüero, A., Quiles-Carrillo, L., Lascano, D., & Montanes, N. (2019). Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials, 12(10), 1627. doi:10.3390/ma12101627 es_ES
dc.description.references Stencel, R., Kasperski, J., Pakieła, W., Mertas, A., Bobela, E., Barszczewska-Rybarek, I., & Chladek, G. (2018). Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler. Materials, 11(6), 1031. doi:10.3390/ma11061031 es_ES
dc.description.references Simmons, H., & Kontopoulou, M. (2018). Hydrolytic degradation of branched PLA produced by reactive extrusion. Polymer Degradation and Stability, 158, 228-237. doi:10.1016/j.polymdegradstab.2018.11.006 es_ES
dc.description.references Oromiehie, A., & Mamizadeh, A. (2004). Recycling PET beverage bottles and improving properties. Polymer International, 53(6), 728-732. doi:10.1002/pi.1389 es_ES
dc.description.references Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 es_ES
dc.description.references Lascano, D., Quiles-Carrillo, L., Balart, R., Boronat, T., & Montanes, N. (2019). Toughened Poly(Lactic Acid)—PLA Formulations by Binary Blends with Poly(Butylene Succinate-co-Adipate)—PBSA and Their Shape Memory Behaviour. Materials, 12(4), 622. doi:10.3390/ma12040622 es_ES
dc.description.references Yarahmadi, N., Jakubowicz, I., & Enebro, J. (2016). Polylactic acid and its blends with petroleum-based resins: Effects of reprocessing and recycling on properties. Journal of Applied Polymer Science, 133(36). doi:10.1002/app.43916 es_ES
dc.description.references Qi, H. J., Joyce, K., & Boyce, M. C. (2003). Durometer Hardness and the Stress-Strain Behavior of Elastomeric Materials. Rubber Chemistry and Technology, 76(2), 419-435. doi:10.5254/1.3547752 es_ES
dc.description.references Graupner, N., Albrecht, K., Ziegmann, G., Enzler, H., & Muessig, J. (2016). Influence of reprocessing on fibre length distribution, tensile strength and impact strength of injection moulded cellulose fibre-reinforced polylactide (PLA) composites. Express Polymer Letters, 10(8), 647-663. doi:10.3144/expresspolymlett.2016.59 es_ES
dc.description.references Awale, R., Ali, F., Azmi, A., Puad, N., Anuar, H., & Hassan, A. (2018). Enhanced Flexibility of Biodegradable Polylactic Acid/Starch Blends Using Epoxidized Palm Oil as Plasticizer. Polymers, 10(9), 977. doi:10.3390/polym10090977 es_ES
dc.description.references Sharma, S., Singh, A. A., Majumdar, A., & Butola, B. S. (2019). Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process. Journal of Materials Science, 54(12), 8971-8983. doi:10.1007/s10853-019-03521-9 es_ES
dc.description.references Tocháček, J., Jančář, J., Kalfus, J., Zbořilová, P., & Buráň, Z. (2008). Degradation of polypropylene impact-copolymer during processing. Polymer Degradation and Stability, 93(4), 770-775. doi:10.1016/j.polymdegradstab.2008.01.027 es_ES
dc.description.references La Mantia, F. P., & Correnti, A. (2003). Effect of Processing Conditions on the Degradation and on the Recycling of Polycarbonate. Progress in Rubber, Plastics and Recycling Technology, 19(3), 135-142. doi:10.1177/147776060301900301 es_ES
dc.description.references Papageorgiou, G. Z., Beslikas, T., Gigis, J., Christoforides, J., & Bikiaris, D. N. (2010). Crystallization and enzymatic hydrolysis of PLA grade for orthopedics. Advances in Polymer Technology, 29(4), 280-299. doi:10.1002/adv.20194 es_ES
dc.description.references Aguero, A., Quiles‐Carrillo, L., Jorda‐Vilaplana, A., Fenollar, O., & Montanes, N. (2019). Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International, 68(5), 893-903. doi:10.1002/pi.5779 es_ES
dc.description.references Signori, F., Coltelli, M.-B., & Bronco, S. (2009). Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation and Stability, 94(1), 74-82. doi:10.1016/j.polymdegradstab.2008.10.004 es_ES
dc.description.references Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus, 2(1). doi:10.1186/2193-1801-2-398 es_ES
dc.description.references Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. doi:10.1016/j.polymdegradstab.2009.11.045 es_ES
dc.description.references Garancher, J.-P., & Fernyhough, A. (2014). Expansion and dimensional stability of semi-crystalline polylactic acid foams. Polymer Degradation and Stability, 100, 21-28. doi:10.1016/j.polymdegradstab.2013.12.037 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem