- -

Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior

Mostrar el registro completo del ítem

Lascano-Aimacaña, DS.; Moraga, G.; Ivorra-Martínez, J.; Rojas-Lema, SP.; Torres-Giner, S.; Balart, R.; Boronat, T.... (2019). Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior. Polymers. 11(12):1-19. https://doi.org/10.3390/polym11122099

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160317

Ficheros en el ítem

Metadatos del ítem

Título: Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior
Autor: Lascano-Aimacaña, Diego Sebastián Moraga, Giovanni Ivorra-Martínez, Juan Rojas-Lema, Sandra Paola Torres-Giner, Sergio Balart, Rafael Boronat, Teodomiro Quiles-Carrillo, Luis
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] This work reports the effect of the addition of an oligomer of lactic acid (OLA), in the 5-20 wt% range, on the processing and properties of polylactide (PLA) pieces prepared by injection molding. The obtained results ...[+]
Palabras clave: PLA , OLA , Impact modifier , Shape memory , Packaging applications
Derechos de uso: Reconocimiento (by)
Fuente:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym11122099
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/polym11122099
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
...[+]
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097249-B-C21/ES/ENVASE ACTIVO MULTICAPA TERMOCONFORMABLE DE ALTA BARRERA BASADO EN BIOECONOMIA CIRCULAR/
info:eu-repo/grantAgreement/UPV//SP2019001/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/
info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2019%2F132/
[-]
Agradecimientos:
This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R. L.Q.-C. wants to thank Generalitat Valenciana (GVA) for ...[+]
Tipo: Artículo

References

Dijkstra, P. J., Du, H., & Feijen, J. (2011). Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym. Chem., 2(3), 520-527. doi:10.1039/c0py00204f

Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533

Radusin, T., Torres-Giner, S., Stupar, A., Ristic, I., Miletic, A., Novakovic, A., & Lagaron, J. M. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life, 21, 100357. doi:10.1016/j.fpsl.2019.100357 [+]
Dijkstra, P. J., Du, H., & Feijen, J. (2011). Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym. Chem., 2(3), 520-527. doi:10.1039/c0py00204f

Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533

Radusin, T., Torres-Giner, S., Stupar, A., Ristic, I., Miletic, A., Novakovic, A., & Lagaron, J. M. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life, 21, 100357. doi:10.1016/j.fpsl.2019.100357

Scarfato, P., Di Maio, L., Milana, M. R., Giamberardini, S., Denaro, M., & Incarnato, L. (2017). Performance properties, lactic acid specific migration and swelling by simulant of biodegradable poly(lactic acid)/nanoclay multilayer films for food packaging. Food Additives & Contaminants: Part A, 34(10), 1730-1742. doi:10.1080/19440049.2017.1321786

Scarfato, P., Di Maio, L., & Incarnato, L. (2015). Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. Journal of Applied Polymer Science, 132(48), n/a-n/a. doi:10.1002/app.42597

Tawakkal, I. S. M. A., Cran, M. J., Miltz, J., & Bigger, S. W. (2014). A Review of Poly(Lactic Acid)-Based Materials for Antimicrobial Packaging. Journal of Food Science, 79(8), R1477-R1490. doi:10.1111/1750-3841.12534

Paula, K. T., Gaál, G., Almeida, G. F. B., Andrade, M. B., Facure, M. H. M., Correa, D. S., … Mendonça, C. R. (2018). Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications. Optics & Laser Technology, 101, 74-79. doi:10.1016/j.optlastec.2017.11.006

Jeoung, S. K., Ha, J. U., Ko, Y. K., Kim, B.-R., Yoo, S. E., Lee, K. D., … Lee, P.-C. (2014). Aerobic biodegradability of polyester/polylactic acid composites for automotive NVH parts. International Journal of Precision Engineering and Manufacturing, 15(8), 1703-1707. doi:10.1007/s12541-014-0522-7

Finkenstadt, V. L., & Tisserat, B. (2010). Poly(lactic acid) and Osage Orange wood fiber composites for agricultural mulch films. Industrial Crops and Products, 31(2), 316-320. doi:10.1016/j.indcrop.2009.11.012

Chang, Y.-C., Chen, Y., Ning, J., Hao, C., Rock, M., Amer, M., … Li, L. (2019). No Such Thing as Trash: A 3D-Printable Polymer Composite Composed of Oil-Extracted Spent Coffee Grounds and Polylactic Acid with Enhanced Impact Toughness. ACS Sustainable Chemistry & Engineering, 7(18), 15304-15310. doi:10.1021/acssuschemeng.9b02527

Gao, Y., Li, Y., Hu, X., Wu, W., Wang, Z., Wang, R., & Zhang, L. (2017). Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing. Polymers, 9(12), 694. doi:10.3390/polym9120694

Kumar, S., Singh, R., Singh, T., & Batish, A. (2019). Investigations of polylactic acid reinforced composite feedstock filaments for multimaterial three-dimensional printing applications. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(17), 5953-5965. doi:10.1177/0954406219861665

Matos, B. D. M., Rocha, V., da Silva, E. J., Moro, F. H., Bottene, A. C., Ribeiro, C. A., … Silva Barud, H. da. (2018). Evaluation of commercially available polylactic acid (PLA) filaments for 3D printing applications. Journal of Thermal Analysis and Calorimetry, 137(2), 555-562. doi:10.1007/s10973-018-7967-3

Bayer, I. (2017). Thermomechanical Properties of Polylactic Acid-Graphene Composites: A State-of-the-Art Review for Biomedical Applications. Materials, 10(7), 748. doi:10.3390/ma10070748

Pierchala, M. K., Makaremi, M., Tan, H. L., Pushpamalar, J., Muniyandy, S., Solouk, A., … Pasbakhsh, P. (2018). Nanotubes in nanofibers: Antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. Applied Clay Science, 160, 95-105. doi:10.1016/j.clay.2017.12.016

Yanfang, C., Jiayi, X., Qinggang, T., Zhenlei, Z., Jun, Z., Xiaoyan, X., & Yan, L. (2019). End-Group Functionalization of Polyethylene Glycol-Polylactic Acid Copolymer and Its Application in the Field of Pharmaceutical Carriers. Journal of Biobased Materials and Bioenergy, 13(5), 690-698. doi:10.1166/jbmb.2019.1900

Torres-Giner, S., Martinez-Abad, A., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Controlled Delivery of Gentamicin Antibiotic from Bioactive Electrospun Polylactide-Based Ultrathin Fibers. Advanced Engineering Materials, 14(4), B112-B122. doi:10.1002/adem.201180006

Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

Quiles-Carrillo, L., Montanes, N., Pineiro, F., Jorda-Vilaplana, A., & Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch. Materials, 11(11), 2138. doi:10.3390/ma11112138

Valerio, O., Pin, J. M., Misra, M., & Mohanty, A. K. (2016). Synthesis of Glycerol-Based Biopolyesters as Toughness Enhancers for Polylactic Acid Bioplastic through Reactive Extrusion. ACS Omega, 1(6), 1284-1295. doi:10.1021/acsomega.6b00325

Zhang, B., Bian, X., Xiang, S., Li, G., & Chen, X. (2017). Synthesis of PLLA-based block copolymers for improving melt strength and toughness of PLLA by in situ reactive blending. Polymer Degradation and Stability, 136, 58-70. doi:10.1016/j.polymdegradstab.2016.11.022

Zou, J., Qi, Y., Su, L., Wei, Y., Li, Z., & Xu, H. (2018). Synthesis and Characterization of Poly(ester amide)s Consisting of Poly(L-lactic acid) and Poly(butylene succinate) Segments with 2,2′-Bis(2-oxazoline) Chain Extending. Macromolecular Research, 26(13), 1212-1218. doi:10.1007/s13233-019-7018-3

Lan, X., Li, X., Liu, Z., He, Z., Yang, W., & Yang, M. (2013). Composition, Morphology and Properties of Poly(lactic acid) and Poly(butylene succinate) Copolymer System via Coupling Reaction. Journal of Macromolecular Science, Part A, 50(8), 861-870. doi:10.1080/10601325.2013.802196

Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339

Garcia-Campo, M. J., Quiles-Carrillo, L., Sanchez-Nacher, L., Balart, R., & Montanes, N. (2018). High toughness poly(lactic acid) (PLA) formulations obtained by ternary blends with poly(3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid. Polymer Bulletin, 76(4), 1839-1859. doi:10.1007/s00289-018-2475-y

Sathornluck, S., & Choochottiros, C. (2019). Modification of epoxidized natural rubber as a PLA toughening agent. Journal of Applied Polymer Science, 136(48), 48267. doi:10.1002/app.48267

Su, S., Kopitzky, R., Tolga, S., & Kabasci, S. (2019). Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review. Polymers, 11(7), 1193. doi:10.3390/polym11071193

Zhang, B., Sun, B., Bian, X., Li, G., & Chen, X. (2016). High Melt Strength and High Toughness PLLA/PBS Blends by Copolymerization and in Situ Reactive Compatibilization. Industrial & Engineering Chemistry Research, 56(1), 52-62. doi:10.1021/acs.iecr.6b03151

Fortelny, I., Ujcic, A., Fambri, L., & Slouf, M. (2019). Phase Structure, Compatibility, and Toughness of PLA/PCL Blends: A Review. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00206

Wang, Y., Mei, Y., Wang, Q., Wei, W., Huang, F., Li, Y., … Zhou, Z. (2019). Improved fracture toughness and ductility of PLA composites by incorporating a small amount of surface-modified helical carbon nanotubes. Composites Part B: Engineering, 162, 54-61. doi:10.1016/j.compositesb.2018.10.060

Li, J., Li, J., Feng, D., Zhao, J., Sun, J., & Li, D. (2017). Excellent rheological performance and impact toughness of cellulose nanofibers/PLA/ionomer composite. RSC Advances, 7(46), 28889-28897. doi:10.1039/c7ra04302c

González‐Ausejo, J., Gámez‐Pérez, J., Balart, R., Lagarón, J. M., & Cabedo, L. (2017). Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends. Polymer Composites, 40(S1). doi:10.1002/pc.24538

Tsou, C.-H., Gao, C., Guzman, M. D., Wu, D.-Y., Hung, W.-S., Yuan, L., … Yeh, J. (2018). Preparation and characterization of poly(lactic acid) with adipate ester added as a plasticizer. Polymers and Polymer Composites, 26(8-9), 446-453. doi:10.1177/0967391118809210

Huang, H., Chen, L., Song, G., & Tang, G. (2018). An efficient plasticization method for poly(lactic acid) using combination of liquid-state and solid-state plasticizers. Journal of Applied Polymer Science, 135(36), 46669. doi:10.1002/app.46669

Kang, H., Li, Y., Gong, M., Guo, Y., Guo, Z., Fang, Q., & Li, X. (2018). An environmentally sustainable plasticizer toughened polylactide. RSC Advances, 8(21), 11643-11651. doi:10.1039/c7ra13448g

Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69

Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039

Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031

Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082

Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329

Notta-Cuvier, D., Murariu, M., Odent, J., Delille, R., Bouzouita, A., Raquez, J.-M., … Dubois, P. (2015). Tailoring Polylactide Properties for Automotive Applications: Effects of Co-Addition of Halloysite Nanotubes and Selected Plasticizer. Macromolecular Materials and Engineering, 300(7), 684-698. doi:10.1002/mame.201500032

Luzi, F., Dominici, F., Armentano, I., Fortunati, E., Burgos, N., Fiori, S., … Torre, L. (2019). Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate Polymers, 223, 115131. doi:10.1016/j.carbpol.2019.115131

Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009

Battegazzore, D., Bocchini, S., & Frache, A. (2011). Crystallization kinetics of poly(lactic acid)-talc composites. Express Polymer Letters, 5(10), 849-858. doi:10.3144/expresspolymlett.2011.84

Kaygusuz, B., & Özerinç, S. (2019). Improving the ductility of polylactic acid parts produced by fused deposition modeling through polyhydroxyalkanoate additions. Journal of Applied Polymer Science, 136(43), 48154. doi:10.1002/app.48154

Lule, Z., & Kim, J. (2019). Nonisothermal Crystallization of Surface-Treated Alumina and Aluminum Nitride-Filled Polylactic Acid Hybrid Composites. Polymers, 11(6), 1077. doi:10.3390/polym11061077

Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062

Jing, X., Mi, H.-Y., Peng, X.-F., & Turng, L.-S. (2014). The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends. Polymer Engineering & Science, 55(1), 70-80. doi:10.1002/pen.23873

Zhang, Z., He, Z., Yang, J., Huang, T., Zhang, N., & Wang, Y. (2016). Crystallization controlled shape memory behaviors of dynamically vulcanized poly(l-lactide)/poly(ethylene vinyl acetate) blends. Polymer Testing, 51, 82-92. doi:10.1016/j.polymertesting.2016.03.003

Shao, L., Dai, J., Zhang, Z., Yang, J., Zhang, N., Huang, T., & Wang, Y. (2015). Thermal and electroactive shape memory behaviors of poly(l-lactide)/thermoplastic polyurethane blend induced by carbon nanotubes. RSC Advances, 5(123), 101455-101465. doi:10.1039/c5ra20632d

Ambrosio-Martín, J., Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). An effect of lactic acid oligomers on the barrier properties of polylactide. Journal of Materials Science, 49(8), 2975-2986. doi:10.1007/s10853-013-7929-x

Courgneau, C., Domenek, S., Guinault, A., Avérous, L., & Ducruet, V. (2011). Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid). Journal of Polymers and the Environment, 19(2), 362-371. doi:10.1007/s10924-011-0285-5

Fortunati, E., Puglia, D., Iannoni, A., Terenzi, A., Kenny, J. M., & Torre, L. (2017). Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films. Materials, 10(7), 809. doi:10.3390/ma10070809

Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2

Chee, W. K., Ibrahim, N. A., Zainuddin, N., Abd Rahman, M. F., & Chieng, B. W. (2013). Impact Toughness and Ductility Enhancement of Biodegradable Poly(lactic acid)/Poly(ε-caprolactone) Blends via Addition of Glycidyl Methacrylate. Advances in Materials Science and Engineering, 2013, 1-8. doi:10.1155/2013/976373

Xue, B., He, H., Zhu, Z., Li, J., Huang, Z., Wang, G., … Zhan, Z. (2018). A Facile Fabrication of High Toughness Poly(lactic Acid) via Reactive Extrusion with Poly(butylene Succinate) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate. Polymers, 10(12), 1401. doi:10.3390/polym10121401

Wang, X., Peng, S., Chen, H., Yu, X., & Zhao, X. (2019). Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Composites Part B: Engineering, 173, 107028. doi:10.1016/j.compositesb.2019.107028

Lascano, D., Quiles-Carrillo, L., Torres-Giner, S., Boronat, T., & Montanes, N. (2019). Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness. Polymers, 11(8), 1354. doi:10.3390/polym11081354

Burgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2013). Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic Acid) Plasticizers. Journal of Polymers and the Environment, 22(2), 227-235. doi:10.1007/s10924-013-0628-5

Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077

Xing, Q., Zhang, X., Dong, X., Liu, G., & Wang, D. (2012). Low-molecular weight aliphatic amides as nucleating agents for poly (L-lactic acid): Conformation variation induced crystallization enhancement. Polymer, 53(11), 2306-2314. doi:10.1016/j.polymer.2012.03.034

Maróti, P., Kocsis, B., Ferencz, A., Nyitrai, M., & Lőrinczy, D. (2019). Differential thermal analysis of the antibacterial effect of PLA-based materials planned for 3D printing. Journal of Thermal Analysis and Calorimetry, 139(1), 367-374. doi:10.1007/s10973-019-08377-4

Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 25(6), 581-590. doi:10.1590/0104-1428.1986

Jia, S., Yu, D., Zhu, Y., Wang, Z., Chen, L., & Fu, L. (2017). Morphology, Crystallization and Thermal Behaviors of PLA-Based Composites: Wonderful Effects of Hybrid GO/PEG via Dynamic Impregnating. Polymers, 9(12), 528. doi:10.3390/polym9100528

Shi, X., Zhang, G., Phuong, T., & Lazzeri, A. (2015). Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid). Molecules, 20(1), 1579-1593. doi:10.3390/molecules20011579

Lu, X. L., Sun, Z. J., Cai, W., & Gao, Z. Y. (2007). Study on the shape memory effects of poly(l-lactide-co-ε-caprolactone) biodegradable polymers. Journal of Materials Science: Materials in Medicine, 19(1), 395-399. doi:10.1007/s10856-006-0100-3

Leonés, A., Sonseca, A., López, D., Fiori, S., & Peponi, L. (2019). Shape memory effect on electrospun PLA-based fibers tailoring their thermal response. European Polymer Journal, 117, 217-226. doi:10.1016/j.eurpolymj.2019.05.014

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem