- -

Neural networks for modelling the energy consumption of metro trains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Neural networks for modelling the energy consumption of metro trains

Mostrar el registro completo del ítem

Martínez Fernández, P.; Salvador Zuriaga, P.; Villalba Sanchis, I.; Insa Franco, R. (2020). Neural networks for modelling the energy consumption of metro trains. Proceedings of the Institution of Mechanical Engineers. Part F, Journal of rail and rapid transit (Online). 234(7):722-733. https://doi.org/10.1177/0954409719861595

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160318

Ficheros en el ítem

Metadatos del ítem

Título: Neural networks for modelling the energy consumption of metro trains
Autor: Martínez Fernández, Pablo Salvador Zuriaga, Pablo Villalba Sanchis, Ignacio Insa Franco, Ricardo
Entidad UPV: Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori
Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports
Fecha difusión:
Resumen:
[EN] This paper presents the application of machine learning systems based on neural networks to model the energy consumption of electric metro trains, as a first step in a research project that aims to optimise the energy ...[+]
Palabras clave: Energy efficiency , Machine learning , Neural networks , Rolling stock , Traction power
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Proceedings of the Institution of Mechanical Engineers. Part F, Journal of rail and rapid transit (Online). (eissn: 2041-3017 )
DOI: 10.1177/0954409719861595
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/0954409719861595
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TRA2011-26602/ES/ESTRATEGIAS PARA EL DISEÑO Y LA EXPLOTACION ENERGETICAMENTE EFICIENTE DE INFRAESTRUCTURAS FERROVIARAS Y TRANVIARIAS/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Project funded by the Spanish Ministry of Economy and Competitiveness (Grant number ...[+]
Tipo: Artículo

References

Douglas, H., Roberts, C., Hillmansen, S., & Schmid, F. (2015). An assessment of available measures to reduce traction energy use in railway networks. Energy Conversion and Management, 106, 1149-1165. doi:10.1016/j.enconman.2015.10.053

Su, S., Tang, T., & Wang, Y. (2016). Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model. Energies, 9(2), 105. doi:10.3390/en9020105

Domínguez, M., Fernández, A., Cucala, A. P., & Blanquer, J. (2010). Efficient design of Automatic Train Operation speed profiles with on board energy storage devices. Computers in Railways XII. doi:10.2495/cr100471 [+]
Douglas, H., Roberts, C., Hillmansen, S., & Schmid, F. (2015). An assessment of available measures to reduce traction energy use in railway networks. Energy Conversion and Management, 106, 1149-1165. doi:10.1016/j.enconman.2015.10.053

Su, S., Tang, T., & Wang, Y. (2016). Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model. Energies, 9(2), 105. doi:10.3390/en9020105

Domínguez, M., Fernández, A., Cucala, A. P., & Blanquer, J. (2010). Efficient design of Automatic Train Operation speed profiles with on board energy storage devices. Computers in Railways XII. doi:10.2495/cr100471

Dominguez, M., Fernandez-Cardador, A., Cucala, A. P., & Pecharroman, R. R. (2012). Energy Savings in Metropolitan Railway Substations Through Regenerative Energy Recovery and Optimal Design of ATO Speed Profiles. IEEE Transactions on Automation Science and Engineering, 9(3), 496-504. doi:10.1109/tase.2012.2201148

Domínguez, M., Fernández-Cardador, A., Cucala, A. P., Gonsalves, T., & Fernández, A. (2014). Multi objective particle swarm optimization algorithm for the design of efficient ATO speed profiles in metro lines. Engineering Applications of Artificial Intelligence, 29, 43-53. doi:10.1016/j.engappai.2013.12.015

Domínguez, M., Fernández, A., Cucala, A. P., & Lukaszewicz, P. (2011). Optimal design of metro automatic train operation speed profiles for reducing energy consumption. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225(5), 463-474. doi:10.1177/09544097jrrt420

Sicre, C., Cucala, P., Fernández, A., Jiménez, J. A., Ribera, I., & Serrano, A. (2010). A method to optimise train energy consumption combining manual energy efficient driving and scheduling. Computers in Railways XII. doi:10.2495/cr100511

Sicre, C., Cucala, A. P., & Fernández-Cardador, A. (2014). Real time regulation of efficient driving of high speed trains based on a genetic algorithm and a fuzzy model of manual driving. Engineering Applications of Artificial Intelligence, 29, 79-92. doi:10.1016/j.engappai.2013.07.015

Van Gent, M. R. A., van den Boogaard, H. F. P., Pozueta, B., & Medina, J. R. (2007). Neural network modelling of wave overtopping at coastal structures. Coastal Engineering, 54(8), 586-593. doi:10.1016/j.coastaleng.2006.12.001

Hasançebi, O., & Dumlupınar, T. (2013). Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks. Computers & Structures, 119, 1-11. doi:10.1016/j.compstruc.2012.12.017

Shahin, M. A., & Indraratna, B. (2006). Modeling the mechanical behavior of railway ballast using artificial neural networks. Canadian Geotechnical Journal, 43(11), 1144-1152. doi:10.1139/t06-077

Sadeghi, J., & Askarinejad, H. (2012). Application of neural networks in evaluation of railway track quality condition. Journal of Mechanical Science and Technology, 26(1), 113-122. doi:10.1007/s12206-011-1016-5

Açıkbaş, S., & Söylemez, M. T. (2008). Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms. IET Electric Power Applications, 2(3), 172-182. doi:10.1049/iet-epa:20070381

Pineda-Jaramillo, J. D., Insa, R., & Martínez, P. (2017). Modeling the energy consumption of trains by applying neural networks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(3), 816-823. doi:10.1177/0954409717694522

Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural network studies. 1. Comparison of overfitting and overtraining. Journal of Chemical Information and Computer Sciences, 35(5), 826-833. doi:10.1021/ci00027a006

Molines, J., Herrera, M. P., & Medina, J. R. (2018). Estimations of wave forces on crown walls based on wave overtopping rates. Coastal Engineering, 132, 50-62. doi:10.1016/j.coastaleng.2017.11.004

Molines, J., & Medina, J. R. (2015). Calibration of overtopping roughness factors for concrete armor units in non-breaking conditions using the CLASH database. Coastal Engineering, 96, 62-70. doi:10.1016/j.coastaleng.2014.11.008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem