- -

Neural networks for modelling the energy consumption of metro trains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Neural networks for modelling the energy consumption of metro trains

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Fernández, Pablo es_ES
dc.contributor.author Salvador Zuriaga, Pablo es_ES
dc.contributor.author Villalba Sanchis, Ignacio es_ES
dc.contributor.author Insa Franco, Ricardo es_ES
dc.date.accessioned 2021-01-30T04:31:59Z
dc.date.available 2021-01-30T04:31:59Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160318
dc.description.abstract [EN] This paper presents the application of machine learning systems based on neural networks to model the energy consumption of electric metro trains, as a first step in a research project that aims to optimise the energy consumed for traction in the Metro Network of Valencia (Spain). An experimental dataset was gathered and used for training. Four input variables (train speed and acceleration, track slope and curvature) and one output variable (traction power) were considered. The fully trained neural network shows good agreement with the target data, with relative mean square error around 21%. Additional tests with independent datasets also give good results (relative mean square error = 16%). The neural network has been applied to five simple case studies to assess its performance - and has proven to correctly model basic consumption trends (e.g. the influence of the slope) - and to properly reproduce acceleration, holding and braking, although it tends to slightly underestimate the energy regenerated during braking. Overall, the neural network provides a consistent estimation of traction power and the global energy consumption of metro trains, and thus may be used as a modelling tool during further stages of research. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Project funded by the Spanish Ministry of Economy and Competitiveness (Grant number TRA2011-26602). es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Proceedings of the Institution of Mechanical Engineers. Part F, Journal of rail and rapid transit (Online) es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Energy efficiency es_ES
dc.subject Machine learning es_ES
dc.subject Neural networks es_ES
dc.subject Rolling stock es_ES
dc.subject Traction power es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Neural networks for modelling the energy consumption of metro trains es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0954409719861595 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TRA2011-26602/ES/ESTRATEGIAS PARA EL DISEÑO Y LA EXPLOTACION ENERGETICAMENTE EFICIENTE DE INFRAESTRUCTURAS FERROVIARAS Y TRANVIARIAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.description.bibliographicCitation Martínez Fernández, P.; Salvador Zuriaga, P.; Villalba Sanchis, I.; Insa Franco, R. (2020). Neural networks for modelling the energy consumption of metro trains. Proceedings of the Institution of Mechanical Engineers. Part F, Journal of rail and rapid transit (Online). 234(7):722-733. https://doi.org/10.1177/0954409719861595 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0954409719861595 es_ES
dc.description.upvformatpinicio 722 es_ES
dc.description.upvformatpfin 733 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 234 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2041-3017 es_ES
dc.relation.pasarela S\391869 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Douglas, H., Roberts, C., Hillmansen, S., & Schmid, F. (2015). An assessment of available measures to reduce traction energy use in railway networks. Energy Conversion and Management, 106, 1149-1165. doi:10.1016/j.enconman.2015.10.053 es_ES
dc.description.references Su, S., Tang, T., & Wang, Y. (2016). Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model. Energies, 9(2), 105. doi:10.3390/en9020105 es_ES
dc.description.references Domínguez, M., Fernández, A., Cucala, A. P., & Blanquer, J. (2010). Efficient design of Automatic Train Operation speed profiles with on board energy storage devices. Computers in Railways XII. doi:10.2495/cr100471 es_ES
dc.description.references Dominguez, M., Fernandez-Cardador, A., Cucala, A. P., & Pecharroman, R. R. (2012). Energy Savings in Metropolitan Railway Substations Through Regenerative Energy Recovery and Optimal Design of ATO Speed Profiles. IEEE Transactions on Automation Science and Engineering, 9(3), 496-504. doi:10.1109/tase.2012.2201148 es_ES
dc.description.references Domínguez, M., Fernández-Cardador, A., Cucala, A. P., Gonsalves, T., & Fernández, A. (2014). Multi objective particle swarm optimization algorithm for the design of efficient ATO speed profiles in metro lines. Engineering Applications of Artificial Intelligence, 29, 43-53. doi:10.1016/j.engappai.2013.12.015 es_ES
dc.description.references Domínguez, M., Fernández, A., Cucala, A. P., & Lukaszewicz, P. (2011). Optimal design of metro automatic train operation speed profiles for reducing energy consumption. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225(5), 463-474. doi:10.1177/09544097jrrt420 es_ES
dc.description.references Sicre, C., Cucala, P., Fernández, A., Jiménez, J. A., Ribera, I., & Serrano, A. (2010). A method to optimise train energy consumption combining manual energy efficient driving and scheduling. Computers in Railways XII. doi:10.2495/cr100511 es_ES
dc.description.references Sicre, C., Cucala, A. P., & Fernández-Cardador, A. (2014). Real time regulation of efficient driving of high speed trains based on a genetic algorithm and a fuzzy model of manual driving. Engineering Applications of Artificial Intelligence, 29, 79-92. doi:10.1016/j.engappai.2013.07.015 es_ES
dc.description.references Van Gent, M. R. A., van den Boogaard, H. F. P., Pozueta, B., & Medina, J. R. (2007). Neural network modelling of wave overtopping at coastal structures. Coastal Engineering, 54(8), 586-593. doi:10.1016/j.coastaleng.2006.12.001 es_ES
dc.description.references Hasançebi, O., & Dumlupınar, T. (2013). Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks. Computers & Structures, 119, 1-11. doi:10.1016/j.compstruc.2012.12.017 es_ES
dc.description.references Shahin, M. A., & Indraratna, B. (2006). Modeling the mechanical behavior of railway ballast using artificial neural networks. Canadian Geotechnical Journal, 43(11), 1144-1152. doi:10.1139/t06-077 es_ES
dc.description.references Sadeghi, J., & Askarinejad, H. (2012). Application of neural networks in evaluation of railway track quality condition. Journal of Mechanical Science and Technology, 26(1), 113-122. doi:10.1007/s12206-011-1016-5 es_ES
dc.description.references Açıkbaş, S., & Söylemez, M. T. (2008). Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms. IET Electric Power Applications, 2(3), 172-182. doi:10.1049/iet-epa:20070381 es_ES
dc.description.references Pineda-Jaramillo, J. D., Insa, R., & Martínez, P. (2017). Modeling the energy consumption of trains by applying neural networks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(3), 816-823. doi:10.1177/0954409717694522 es_ES
dc.description.references Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural network studies. 1. Comparison of overfitting and overtraining. Journal of Chemical Information and Computer Sciences, 35(5), 826-833. doi:10.1021/ci00027a006 es_ES
dc.description.references Molines, J., Herrera, M. P., & Medina, J. R. (2018). Estimations of wave forces on crown walls based on wave overtopping rates. Coastal Engineering, 132, 50-62. doi:10.1016/j.coastaleng.2017.11.004 es_ES
dc.description.references Molines, J., & Medina, J. R. (2015). Calibration of overtopping roughness factors for concrete armor units in non-breaking conditions using the CLASH database. Coastal Engineering, 96, 62-70. doi:10.1016/j.coastaleng.2014.11.008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem