- -

Manufacturing and Characterization of Functionalized Aliphatic Polyester from Poly(lactic acid) with Halloysite Nanotubes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Manufacturing and Characterization of Functionalized Aliphatic Polyester from Poly(lactic acid) with Halloysite Nanotubes

Mostrar el registro completo del ítem

Montava-Jorda, S.; Chacon, V.; Lascano-Aimacaña, DS.; Sanchez-Nacher, L.; Montanes, N. (2019). Manufacturing and Characterization of Functionalized Aliphatic Polyester from Poly(lactic acid) with Halloysite Nanotubes. Polymers. 11(8):1-21. https://doi.org/10.3390/polym11081314

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160321

Ficheros en el ítem

Metadatos del ítem

Título: Manufacturing and Characterization of Functionalized Aliphatic Polyester from Poly(lactic acid) with Halloysite Nanotubes
Autor: Montava-Jorda, Sergi Chacon, Victor Lascano-Aimacaña, Diego Sebastián Sanchez-Nacher, Lourdes Montanes, Nestor
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] This work reports the potential of poly(lactic acid)-PLA composites with different halloysite nanotube (HNTs) loading (3, 6 and 9 wt%) for further uses in advanced applications as HNTs could be used as carriers for ...[+]
Palabras clave: Poly(lactic acid) , Halloysite nanotubes , Mechanical characterization , Morphology , Thermal characterization
Derechos de uso: Reconocimiento (by)
Fuente:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym11081314
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/polym11081314
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
Agradecimientos:
This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) through the MAT2017-84909-C2-2-R program number. D. Lascano wants to thank UPV for the grant received though the PAID-01-18 ...[+]
Tipo: Artículo

References

Andreeßen, C., & Steinbüchel, A. (2018). Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives. Applied Microbiology and Biotechnology, 103(1), 143-157. doi:10.1007/s00253-018-9483-6

Djukić-Vuković, A., Mladenović, D., Ivanović, J., Pejin, J., & Mojović, L. (2019). Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews, 108, 238-252. doi:10.1016/j.rser.2019.03.050

Matson, J. B., & Baker, M. B. (2019). Polymers for biology, medicine and sustainability. Polymer International, 68(7), 1219-1219. doi:10.1002/pi.5829 [+]
Andreeßen, C., & Steinbüchel, A. (2018). Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives. Applied Microbiology and Biotechnology, 103(1), 143-157. doi:10.1007/s00253-018-9483-6

Djukić-Vuković, A., Mladenović, D., Ivanović, J., Pejin, J., & Mojović, L. (2019). Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews, 108, 238-252. doi:10.1016/j.rser.2019.03.050

Matson, J. B., & Baker, M. B. (2019). Polymers for biology, medicine and sustainability. Polymer International, 68(7), 1219-1219. doi:10.1002/pi.5829

Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2

Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043

España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421

Scaffaro, R., Maio, A., Sutera, F., Gulino, E., & Morreale, M. (2019). Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers, 11(4), 651. doi:10.3390/polym11040651

Li, Y., Chu, Z., Li, X., Ding, X., Guo, M., Zhao, H., … Fan, Y. (2017). The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters. Regenerative Biomaterials, 4(3), 179-190. doi:10.1093/rb/rbx009

González, E. A. S., Olmos, D., Lorente, M. Á., Vélaz, I., & González-Benito, J. (2018). Preparation and Characterization of Polymer Composite Materials Based on PLA/TiO2 for Antibacterial Packaging. Polymers, 10(12), 1365. doi:10.3390/polym10121365

Li, Y., Liao, C., & Tjong, S. C. (2019). Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications. Nanomaterials, 9(4), 590. doi:10.3390/nano9040590

Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027

Filgueira, D., Holmen, S., Melbø, J., Moldes, D., Echtermeyer, A., & Chinga-Carrasco, G. (2018). 3D Printable Filaments Made of Biobased Polyethylene Biocomposites. Polymers, 10(3), 314. doi:10.3390/polym10030314

Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940

Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2014). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. doi:10.1007/s10853-014-8647-8

Yu, X., Wang, X., Zhang, Z., Peng, S., Chen, H., & Zhao, X. (2019). High-performance fully bio-based poly(lactic acid)/ polyamide11 (PLA/PA11) blends by reactive blending with multi-functionalized epoxy. Polymer Testing, 78, 105980. doi:10.1016/j.polymertesting.2019.105980

Gandini, A., Lacerda, T. M., Carvalho, A. J. F., & Trovatti, E. (2015). Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Reviews, 116(3), 1637-1669. doi:10.1021/acs.chemrev.5b00264

Abedini, F., Ebrahimi, M., Roozbehani, A. H., Domb, A. J., & Hosseinkhani, H. (2018). Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polymers for Advanced Technologies, 29(10), 2564-2573. doi:10.1002/pat.4375

Riaz Rajoka, M. S., Zhao, L., Mehwish, H. M., Wu, Y., & Mahmood, S. (2019). Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges. Applied Microbiology and Biotechnology, 103(4), 1557-1571. doi:10.1007/s00253-018-9550-z

Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567

Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042

DeFrates, K., Markiewicz, T., Gallo, P., Rack, A., Weyhmiller, A., Jarmusik, B., & Hu, X. (2018). Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. International Journal of Molecular Sciences, 19(6), 1717. doi:10.3390/ijms19061717

Rai, K., Sun, Y., Shaliutina-Kolesova, A., Nian, R., & Xian, M. (2018). Proteins: Natural Polymers for Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 8(3), 295-308. doi:10.1166/jbt.2018.1753

Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057

Haddadi, M. H., Asadolahi, R., & Negahdari, B. (2019). The bioextraction of bioplastics with focus on polyhydroxybutyrate: a review. International Journal of Environmental Science and Technology, 16(7), 3935-3948. doi:10.1007/s13762-019-02352-0

Zubir, N. H. M., Sam, S. T., Zulkepli, N. N., & Omar, M. F. (2017). The effect of rice straw particulate loading and polyethylene glycol as plasticizer on the properties of polylactic acid/polyhydroxybutyrate-valerate blends. Polymer Bulletin, 75(1), 61-76. doi:10.1007/s00289-017-2018-y

Garcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2018). Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487-498. doi:10.1016/j.clay.2018.06.042

Pramanik, N., Bhattacharya, S., Rath, T., De, J., Adhikary, A., Basu, R. K., & Kundu, P. P. (2019). Polyhydroxybutyrate-co-hydroxyvalerate copolymer modified graphite oxide based 3D scaffold for tissue engineering application. Materials Science and Engineering: C, 94, 534-546. doi:10.1016/j.msec.2018.10.009

Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396

Liu, Y., Wei, H., Wang, Z., Li, Q., & Tian, N. (2018). Simultaneous Enhancement of Strength and Toughness of PLA Induced by Miscibility Variation with PVA. Polymers, 10(10), 1178. doi:10.3390/polym10101178

Behera, K., Sivanjineyulu, V., Chang, Y.-H., & Chiu, F.-C. (2018). Thermal properties, phase morphology and stability of biodegradable PLA/PBSL/HAp composites. Polymer Degradation and Stability, 154, 248-260. doi:10.1016/j.polymdegradstab.2018.06.010

Notta-Cuvier, D., Odent, J., Delille, R., Murariu, M., Lauro, F., Raquez, J. M., … Dubois, P. (2014). Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing, 36, 1-9. doi:10.1016/j.polymertesting.2014.03.007

Zhang, L., Lv, S., Sun, C., Wan, L., Tan, H., & Zhang, Y. (2017). Effect of MAH-g-PLA on the Properties of Wood Fiber/Polylactic Acid Composites. Polymers, 9(11), 591. doi:10.3390/polym9110591

Jiang, Y., Yan, C., Wang, K., Shi, D., Liu, Z., & Yang, M. (2019). Super-Toughed PLA Blown Film with Enhanced Gas Barrier Property Available for Packaging and Agricultural Applications. Materials, 12(10), 1663. doi:10.3390/ma12101663

Radusin, T., Tomšik, A., Šarić, L., Ristić, I., Giacinti Baschetti, M., Minelli, M., & Novaković, A. (2018). Hybrid Pla/wild garlic antimicrobial composite films for food packaging application. Polymer Composites, 40(3), 893-900. doi:10.1002/pc.24755

Łopusiewicz, Ł., Jędra, F., & Mizielińska, M. (2018). New Poly(lactic acid) Active Packaging Composite Films Incorporated with Fungal Melanin. Polymers, 10(4), 386. doi:10.3390/polym10040386

Behera, K., Chang, Y.-H., Chiu, F.-C., & Yang, J.-C. (2017). Characterization of poly(lactic acid)s with reduced molecular weight fabricated through an autoclave process. Polymer Testing, 60, 132-139. doi:10.1016/j.polymertesting.2017.03.015

Matos, B. D. M., Rocha, V., da Silva, E. J., Moro, F. H., Bottene, A. C., Ribeiro, C. A., … Silva Barud, H. da. (2018). Evaluation of commercially available polylactic acid (PLA) filaments for 3D printing applications. Journal of Thermal Analysis and Calorimetry, 137(2), 555-562. doi:10.1007/s10973-018-7967-3

Alturkestany, M. T., Panchal, V., & Thompson, M. R. (2018). Improved part strength for the fused deposition 3D printing technique by chemical modification of polylactic acid. Polymer Engineering & Science, 59(s2), E59-E64. doi:10.1002/pen.24955

Fairag, R., Rosenzweig, D. H., Ramirez-Garcialuna, J. L., Weber, M. H., & Haglund, L. (2019). Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro. ACS Applied Materials & Interfaces, 11(17), 15306-15315. doi:10.1021/acsami.9b02502

Sanatgar, R. H., Cayla, A., Campagne, C., & Nierstrasz, V. (2018). Morphological and electrical characterization of conductive polylactic acid based nanocomposite before and after FDM 3D printing. Journal of Applied Polymer Science, 136(6), 47040. doi:10.1002/app.47040

Song, B., Li, W., Chen, Z., Fu, G., Li, C., Liu, W., … Ding, Y. (2017). Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction—A cadaveric experimental study. Journal of Orthopaedic Translation, 8, 32-39. doi:10.1016/j.jot.2016.09.001

Leksakul, K., & Phuendee, M. (2018). Development of hydroxyapatite-polylactic acid composite bone fixation plate. Science and Engineering of Composite Materials, 25(5), 903-914. doi:10.1515/secm-2016-0359

Zhan, X., Guo, X., Liu, R., Hu, W., Zhang, L., & Xiang, N. (2017). Intervention using a novel biodegradable hollow stent containing polylactic acid-polyprolactone-polyethylene glycol complexes against lacrimal duct obstruction disease. PLOS ONE, 12(6), e0178679. doi:10.1371/journal.pone.0178679

Chen, Y., Murphy, A., Scholz, D., Geever, L. M., Lyons, J. G., & Devine, D. M. (2018). Surface-modified halloysite nanotubes reinforced poly(lactic acid) for use in biodegradable coronary stents. Journal of Applied Polymer Science, 135(30), 46521. doi:10.1002/app.46521

Dillon, Doran, Fuenmayor, Healy, Gately, Major, & Lyons. (2019). The Influence of Low Shear Microbore Extrusion on the Properties of High Molecular Weight Poly(l-Lactic Acid) for Medical Tubing Applications. Polymers, 11(4), 710. doi:10.3390/polym11040710

Haroosh, H. J., Dong, Y., & Lau, K.-T. (2014). Tetracycline hydrochloride (TCH)-loaded drug carrier based on PLA:PCL nanofibre mats: experimental characterisation and release kinetics modelling. Journal of Materials Science, 49(18), 6270-6281. doi:10.1007/s10853-014-8352-7

Park, J.-W., Shin, J.-H., Shim, G.-S., Sim, K.-B., Jang, S.-W., & Kim, H.-J. (2019). Mechanical Strength Enhancement of Polylactic Acid Hybrid Composites. Polymers, 11(2), 349. doi:10.3390/polym11020349

Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348

Jamróz, E., Kulawik, P., & Kopel, P. (2019). The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Polymers, 11(4), 675. doi:10.3390/polym11040675

Huang, T., Qian, Y., Wei, J., & Zhou, C. (2019). Polymeric Antimicrobial Food Packaging and Its Applications. Polymers, 11(3), 560. doi:10.3390/polym11030560

Sharmeen, S., Rahman, A. F. M. M., Lubna, M. M., Salem, K. S., Islam, R., & Khan, M. A. (2018). Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: An approach for significant drug release. Bioactive Materials, 3(3), 236-244. doi:10.1016/j.bioactmat.2018.03.001

Arul Xavier, S., & U., V. (2018). Electrochemically grown functionalized -Multi-walled carbon nanotubes/hydroxyapatite hybrids on surgical grade 316L SS with enhanced corrosion resistance and bioactivity. Colloids and Surfaces B: Biointerfaces, 171, 186-196. doi:10.1016/j.colsurfb.2018.06.058

Van den Broeck, L., Piluso, S., Soultan, A. H., De Volder, M., & Patterson, J. (2019). Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Materials Science and Engineering: C, 98, 1133-1144. doi:10.1016/j.msec.2019.01.020

Zhang, X., Zhang, D., Peng, Q., Lin, J., & Wen, C. (2019). Biocompatibility of Nanoscale Hydroxyapatite Coating on TiO2 Nanotubes. Materials, 12(12), 1979. doi:10.3390/ma12121979

Beke, S., Barenghi, R., Farkas, B., Romano, I., Kőrösi, L., Scaglione, S., & Brandi, F. (2014). Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings. Materials Science and Engineering: C, 44, 38-43. doi:10.1016/j.msec.2014.07.008

Chandanshive, B. B., Rai, P., Rossi, A. L., Ersen, O., & Khushalani, D. (2013). Synthesis of hydroxyapatite nanotubes for biomedical applications. Materials Science and Engineering: C, 33(5), 2981-2986. doi:10.1016/j.msec.2013.03.022

Zhang, Y., Nayak, T., Hong, H., & Cai, W. (2013). Biomedical Applications of Zinc Oxide Nanomaterials. Current Molecular Medicine, 13(10), 1633-1645. doi:10.2174/1566524013666131111130058

Garcia-Garcia, D., Ferri, J. M., Ripoll, L., Hidalgo, M., Lopez-Martinez, J., & Balart, R. (2017). Characterization of selectively etched halloysite nanotubes by acid treatment. Applied Surface Science, 422, 616-625. doi:10.1016/j.apsusc.2017.06.104

Venkatesh, C., Clear, O., Major, I., Lyons, J. G., & Devine, D. M. (2019). Faster Release of Lumen-Loaded Drugs than Matrix-Loaded Equivalent in Polylactic Acid/Halloysite Nanotubes. Materials, 12(11), 1830. doi:10.3390/ma12111830

Pluta, M., Bojda, J., Piorkowska, E., Murariu, M., Bonnaud, L., & Dubois, P. (2017). The effect of halloysite nanotubes and N,N′-ethylenebis (stearamide) on morphology and properties of polylactide nanocomposites with crystalline matrix. Polymer Testing, 64, 83-91. doi:10.1016/j.polymertesting.2017.09.013

Yin, X., Wang, L., Li, S., He, G., & Yang, Z. (2017). Effects of surface modification of halloysite nanotubes on the morphology and the thermal and rheological properties of polypropylene/halloysite composites. Journal of Polymer Engineering, 38(2), 119-127. doi:10.1515/polyeng-2017-0025

Padhi, S., Achary, P. G. R., & Nayak, N. C. (2017). Mechanical and morphological properties of modified halloysite nanotube filled ethylene-vinyl acetate copolymer nanocomposites. Journal of Polymer Engineering, 38(3), 271-279. doi:10.1515/polyeng-2017-0075

Gorrasi, G., Bugatti, V., Ussia, M., Mendichi, R., Zampino, D., Puglisi, C., & Carroccio, S. C. (2018). Halloysite nanotubes and thymol as photo protectors of biobased polyamide 11. Polymer Degradation and Stability, 152, 43-51. doi:10.1016/j.polymdegradstab.2018.03.015

Massaro, M., Cavallaro, G., Colletti, C. G., D’Azzo, G., Guernelli, S., Lazzara, G., … Riela, S. (2018). Halloysite nanotubes for efficient loading, stabilization and controlled release of insulin. Journal of Colloid and Interface Science, 524, 156-164. doi:10.1016/j.jcis.2018.04.025

Sikora, J. W., Gajdoš, I., & Puszka, A. (2019). Polyethylene-Matrix Composites with Halloysite Nanotubes with Enhanced Physical/Thermal Properties. Polymers, 11(5), 787. doi:10.3390/polym11050787

Therias, S., Murariu, M., & Dubois, P. (2017). Bionanocomposites based on PLA and halloysite nanotubes: From key properties to photooxidative degradation. Polymer Degradation and Stability, 145, 60-69. doi:10.1016/j.polymdegradstab.2017.06.008

Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly(lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657-1677. doi:10.1016/j.progpolymsci.2012.07.005

Ke, T., & Sun, X. (2001). Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. Journal of Applied Polymer Science, 81(12), 3069-3082. doi:10.1002/app.1758

Fischer, E. W., Sterzel, H. J., & Wegner, G. (1973). Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift und Zeitschrift für Polymere, 251(11), 980-990. doi:10.1007/bf01498927

Li, Y., Venkateshan, K., & Sun, X. S. (2010). Mechanical and thermal properties, morphology and relaxation characteristics of poly(lactic acid) and soy flour/wood flour blends. Polymer International, n/a-n/a. doi:10.1002/pi.2834

Russo, P., Cammarano, S., Bilotti, E., Peijs, T., Cerruti, P., & Acierno, D. (2013). Physical properties of poly lactic acid/clay nanocomposite films: Effect of filler content and annealing treatment. Journal of Applied Polymer Science, 131(2), n/a-n/a. doi:10.1002/app.39798

Prashantha, K., Lecouvet, B., Sclavons, M., Lacrampe, M. F., & Krawczak, P. (2012). Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.38358

De Silva, R. T., Soheilmoghaddam, M., Goh, K. L., Wahit, M. U., Bee, S. A. H., Chai, S.-P., & Pasbakhsh, P. (2014). Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polymer Composites, 37(3), 861-869. doi:10.1002/pc.23244

De Silva, R., Pasbakhsh, P., Goh, K., Chai, S.-P., & Chen, J. (2013). Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. Journal of Composite Materials, 48(30), 3705-3717. doi:10.1177/0021998313513046

Pracella, M., Haque, M. M.-U., & Puglia, D. (2014). Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer, 55(16), 3720-3728. doi:10.1016/j.polymer.2014.06.071

Kontou, E., Niaounakis, M., & Georgiopoulos, P. (2011). Comparative study of PLA nanocomposites reinforced with clay and silica nanofillers and their mixtures. Journal of Applied Polymer Science, 122(3), 1519-1529. doi:10.1002/app.34234

Chen, Y., Geever, L. M., Killion, J. A., Lyons, J. G., Higginbotham, C. L., & Devine, D. M. (2015). Halloysite nanotube reinforced polylactic acid composite. Polymer Composites, 38(10), 2166-2173. doi:10.1002/pc.23794

Guo, J., Qiao, J., & Zhang, X. (2016). Effect of an alkalized-modified halloysite on PLA crystallization, morphology, mechanical, and thermal properties of PLA/halloysite nanocomposites. Journal of Applied Polymer Science, 133(48). doi:10.1002/app.44272

Liu, M., Zhang, Y., & Zhou, C. (2013). Nanocomposites of halloysite and polylactide. Applied Clay Science, 75-76, 52-59. doi:10.1016/j.clay.2013.02.019

Tham, W. L., Poh, B. T., Mohd Ishak, Z. A., & Chow, W. S. (2014). Thermal behaviors and mechanical properties of halloysite nanotube-reinforced poly(lactic acid) nanocomposites. Journal of Thermal Analysis and Calorimetry, 118(3), 1639-1647. doi:10.1007/s10973-014-4062-2

Murariu, M., Doumbia, A., Bonnaud, L., Dechief, A., Paint, Y., Ferreira, M., … Dubois, P. (2011). High-Performance Polylactide/ZnO Nanocomposites Designed for Films and Fibers with Special End-Use Properties. Biomacromolecules, 12(5), 1762-1771. doi:10.1021/bm2001445

Murariu, M., Dechief, A.-L., Paint, Y., Peeterbroeck, S., Bonnaud, L., & Dubois, P. (2012). Polylactide (PLA)—Halloysite Nanocomposites: Production, Morphology and Key-Properties. Journal of Polymers and the Environment, 20(4), 932-943. doi:10.1007/s10924-012-0488-4

Zhu, T., Qian, C., Zheng, W., Bei, R., Liu, S., Chi, Z., … Xu, J. (2018). Modified halloysite nanotube filled polyimide composites for film capacitors: high dielectric constant, low dielectric loss and excellent heat resistance. RSC Advances, 8(19), 10522-10531. doi:10.1039/c8ra01373j

Kumar, R., Yakubu, M. K., & Anandjiwala, R. D. (2010). Biodegradation of flax fiber reinforced poly lactic acid. Express Polymer Letters, 4(7), 423-430. doi:10.3144/expresspolymlett.2010.53

Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779

Aguero, A., Quiles‐Carrillo, L., Jorda‐Vilaplana, A., Fenollar, O., & Montanes, N. (2019). Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International, 68(5), 893-903. doi:10.1002/pi.5779

Paul, M.-A., Delcourt, C., Alexandre, M., Degée, P., Monteverde, F., & Dubois, P. (2005). Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polymer Degradation and Stability, 87(3), 535-542. doi:10.1016/j.polymdegradstab.2004.10.011

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem