Mostrar el registro sencillo del ítem
dc.contributor.author | BADÍA CONTELLES, JOSÉ MANUEL | es_ES |
dc.contributor.author | Belloch Rodríguez, José Antonio | es_ES |
dc.contributor.author | Cobos Serrano, Máximo | es_ES |
dc.contributor.author | IGUAL PEÑA, FRANCISCO DANIEL | es_ES |
dc.contributor.author | Quintana-Ortí, Enrique S. | es_ES |
dc.date.accessioned | 2021-02-02T04:32:10Z | |
dc.date.available | 2021-02-02T04:32:10Z | |
dc.date.issued | 2019-03 | es_ES |
dc.identifier.issn | 0920-8542 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160415 | |
dc.description.abstract | [EN] The Steered Response Power with Phase Transform (SRP-PHAT) algorithm is a well-known method for sound source localization due to its robust performance in noisy and reverberant environments. This algorithm is used in a large number of acoustic applications such as automatic camera steering systems, human-machine interaction, video gaming and audio surveillance. SPR-PHAT implementations require to handle a high number of signals coming from a microphone array and a huge search grid that influences the localization accuracy of the system. In this context, high performance in the localization process can only be achieved by using massively parallel computational resources. Different types of multi-core machines based either on multiple CPUs or on GPUs are commonly employed in diverse fields of science for accelerating a number of applications, mainly using OpenMP and CUDA as programming frameworks, respectively. This implies the development of multiple source codes which limits the portability and application possibilities. On the contrary, OpenCL has emerged as an open standard for parallel programming that is nowadays supported by a wide range of architectures. In this work, we evaluate an OpenCL-based implementations of the SRP-PHAT algorithm in two state-of-the-art CPU and GPU platforms. Results demonstrate that OpenCL achieves close-to-CUDA performance in GPU (considered as upper bound) and outperforms in most of the CPU configurations based on OpenMP. | es_ES |
dc.description.sponsorship | This work has been supported by the postdoctoral fellowship from Generalitat Valenciana APOSTD/2016/069, the Spanish Government through TIN2014-53495-R, TIN2015-65277-R and BIA2016-76957-C3-1-R, and the Universidad Jaume I Project UJI-B2016-20. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | The Journal of Supercomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | SRP-PHAT | es_ES |
dc.subject | OpenCL | es_ES |
dc.subject | Multi-core CPUs | es_ES |
dc.subject | GPUs | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Accelerating the SRP-PHAT algorithm on multi and many-core platforms using OpenCL | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11227-018-2422-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2016%2F069/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//UJI-B2016-20/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2016-76957-C3-1-R/ES/HERRAMIENTAS INTELIGENTES PARA LA GESTION Y CONTROL DEL PAISAJE SONORO URBANO. DEFINICION DE PROTOCOLOS DE MONITORIZACION Y AURALIZACION. INTERVENCION EN EL PATRIMONIO SONORO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-65277-R/ES/COMPPUTACION HETEROGENEA EFICIENTE: DEL PROCESADOR AL DATACENTER/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Badía Contelles, JM.; Belloch Rodríguez, JA.; Cobos Serrano, M.; Igual Peña, FD.; Quintana-Ortí, ES. (2019). Accelerating the SRP-PHAT algorithm on multi and many-core platforms using OpenCL. The Journal of Supercomputing. 75(3):1284-1297. https://doi.org/10.1007/s11227-018-2422-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11227-018-2422-6 | es_ES |
dc.description.upvformatpinicio | 1284 | es_ES |
dc.description.upvformatpfin | 1297 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 75 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\387467 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Brandstein M, Ward D (eds) (2001) Microphone arrays. Springer, Berlin | es_ES |
dc.description.references | Knapp CH, Carter GC (1976) The generalized correlation method for estimation of time delay. Trans Acoust Speech Signal Process 24:320–327 | es_ES |
dc.description.references | Cobos M, Antonacci F, Alexandridis A, Mouchtaris A, Lee B (2017) A survey of sound source localization methods in wireless acoustic sensor networks. Wirel Commun Mobile Comput 2017, article ID 3956282 | es_ES |
dc.description.references | DiBiase JH (2000) A high accuracy, low-latency technique for talker localization in reverberant environments using microphone arrays. Ph.D. dissertation, Brown University, Providence | es_ES |
dc.description.references | Lee CH (2017) Location-aware speakers for the virtual reality environments. IEEE Access 5:2636–2640 | es_ES |
dc.description.references | Altera Corporation (2013) Implementing FPGA design with the OpenCL standard. https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf . Accessed 21 May 2018 | es_ES |
dc.description.references | Savioja L, Välimäki V, Smith JO (2011) Audio signal processing using graphics processing units. J Audio Eng Soc 59(1–2):3–19 | es_ES |
dc.description.references | Belloch JA, Gonzalez A, Martínez-Zaldívar FJ, Vidal AM (2011) Real-time massive convolution for audio applications on GPU. J Supercomput 58(3):449–457 | es_ES |
dc.description.references | Belloch JA, Gonzalez A, Quintana-Ortí ES, Ferrer M, Välimäki V (2017) GPU-based dynamic wave field synthesis using fractional delay filters and room compensation. IEEE/ACM Trans Audio Speech Lang Process 25(2):435–447 | es_ES |
dc.description.references | Peruffo Minotto V, Rosito Jung C, Gonzaga da Silveira L, Lee B (2013) GPU-based approaches for real-time sound source localization using the SRP-PHAT algorithm. Int J High Perform Comput Appl 27(3):291–306 | es_ES |
dc.description.references | Belloch JA, Gonzalez A, Vidal AM, Cobos M (2015) On the performance of multi-gpu-based expert systems for acoustic localization involving massive microphone arrays. Expert Syst Appl 42(13):5607–5620 | es_ES |
dc.description.references | Seewald LC, Gonzaga L, Veronez MR, Minotto VP, Jung CR (2014) Combining srp-phat and two kinects for 3d sound source localization. Expert Syst Appl 41(16):0957–4174 | es_ES |
dc.description.references | Theodoropoulos D, Kuzmanov G, Gaydadjiev G (2011) Multi-core platforms for beamforming and wave field synthesis. IEEE Trans Multimedia 3(2):235–245 | es_ES |
dc.description.references | Belloch JA, Badia MJ, Igual FD, Quintana-Ortí E, Cobos M (2017) Evaluating sound source localization on multi and many-core platform. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, vol 1. Rota, pp 279–286 | es_ES |
dc.description.references | Cobos M, Marti A, Lopez JJ (2011) A modified SRP-PHAT functional for robust real-time sound source localization with scalable spatial sampling. IEEE Signal Process Lett 18(1):71–74 | es_ES |
dc.description.references | Marti A, Cobos M, Lopez JJ (2013) A steered response power iterative method for high-accuracy acoustic source location. J Acoust Soc Am 134(4):2627–2630 | es_ES |
dc.description.references | Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231 (special issue on “Program generation, optimization, and platform adaptation”) | es_ES |
dc.description.references | NVIDIA cuFFT library user’s guide (2018). https://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf . Accessed 21 May 2018 | es_ES |
dc.description.references | OpenCL fast Fourier transforms. http://clmathlibraries.github.io/clFFT . Accessed 21 May 2018 | es_ES |
dc.description.references | Scarpino M (2012) OpenCL in action: how to accelerate graphics and computation. Manning | es_ES |