- -

Accelerating the SRP-PHAT algorithm on multi and many-core platforms using OpenCL

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Accelerating the SRP-PHAT algorithm on multi and many-core platforms using OpenCL

Mostrar el registro completo del ítem

Badía Contelles, JM.; Belloch Rodríguez, JA.; Cobos Serrano, M.; Igual Peña, FD.; Quintana-Ortí, ES. (2019). Accelerating the SRP-PHAT algorithm on multi and many-core platforms using OpenCL. The Journal of Supercomputing. 75(3):1284-1297. https://doi.org/10.1007/s11227-018-2422-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160415

Ficheros en el ítem

Metadatos del ítem

Título: Accelerating the SRP-PHAT algorithm on multi and many-core platforms using OpenCL
Autor: BADÍA CONTELLES, JOSÉ MANUEL Belloch Rodríguez, José Antonio Cobos Serrano, Máximo IGUAL PEÑA, FRANCISCO DANIEL Quintana-Ortí, Enrique S.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] The Steered Response Power with Phase Transform (SRP-PHAT) algorithm is a well-known method for sound source localization due to its robust performance in noisy and reverberant environments. This algorithm is used in ...[+]
Palabras clave: SRP-PHAT , OpenCL , Multi-core CPUs , GPUs
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-018-2422-6
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11227-018-2422-6
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2016%2F069/
info:eu-repo/grantAgreement/UJI//UJI-B2016-20/
info:eu-repo/grantAgreement/MINECO//BIA2016-76957-C3-1-R/ES/HERRAMIENTAS INTELIGENTES PARA LA GESTION Y CONTROL DEL PAISAJE SONORO URBANO. DEFINICION DE PROTOCOLOS DE MONITORIZACION Y AURALIZACION. INTERVENCION EN EL PATRIMONIO SONORO/
info:eu-repo/grantAgreement/MINECO//TIN2015-65277-R/ES/COMPPUTACION HETEROGENEA EFICIENTE: DEL PROCESADOR AL DATACENTER/
Agradecimientos:
This work has been supported by the postdoctoral fellowship from Generalitat Valenciana APOSTD/2016/069, the Spanish Government through TIN2014-53495-R, TIN2015-65277-R and BIA2016-76957-C3-1-R, and the Universidad Jaume ...[+]
Tipo: Artículo

References

Brandstein M, Ward D (eds) (2001) Microphone arrays. Springer, Berlin

Knapp CH, Carter GC (1976) The generalized correlation method for estimation of time delay. Trans Acoust Speech Signal Process 24:320–327

Cobos M, Antonacci F, Alexandridis A, Mouchtaris A, Lee B (2017) A survey of sound source localization methods in wireless acoustic sensor networks. Wirel Commun Mobile Comput 2017, article ID 3956282 [+]
Brandstein M, Ward D (eds) (2001) Microphone arrays. Springer, Berlin

Knapp CH, Carter GC (1976) The generalized correlation method for estimation of time delay. Trans Acoust Speech Signal Process 24:320–327

Cobos M, Antonacci F, Alexandridis A, Mouchtaris A, Lee B (2017) A survey of sound source localization methods in wireless acoustic sensor networks. Wirel Commun Mobile Comput 2017, article ID 3956282

DiBiase JH (2000) A high accuracy, low-latency technique for talker localization in reverberant environments using microphone arrays. Ph.D. dissertation, Brown University, Providence

Lee CH (2017) Location-aware speakers for the virtual reality environments. IEEE Access 5:2636–2640

Altera Corporation (2013) Implementing FPGA design with the OpenCL standard. https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf . Accessed 21 May 2018

Savioja L, Välimäki V, Smith JO (2011) Audio signal processing using graphics processing units. J Audio Eng Soc 59(1–2):3–19

Belloch JA, Gonzalez A, Martínez-Zaldívar FJ, Vidal AM (2011) Real-time massive convolution for audio applications on GPU. J Supercomput 58(3):449–457

Belloch JA, Gonzalez A, Quintana-Ortí ES, Ferrer M, Välimäki V (2017) GPU-based dynamic wave field synthesis using fractional delay filters and room compensation. IEEE/ACM Trans Audio Speech Lang Process 25(2):435–447

Peruffo Minotto V, Rosito Jung C, Gonzaga da Silveira L, Lee B (2013) GPU-based approaches for real-time sound source localization using the SRP-PHAT algorithm. Int J High Perform Comput Appl 27(3):291–306

Belloch JA, Gonzalez A, Vidal AM, Cobos M (2015) On the performance of multi-gpu-based expert systems for acoustic localization involving massive microphone arrays. Expert Syst Appl 42(13):5607–5620

Seewald LC, Gonzaga L, Veronez MR, Minotto VP, Jung CR (2014) Combining srp-phat and two kinects for 3d sound source localization. Expert Syst Appl 41(16):0957–4174

Theodoropoulos D, Kuzmanov G, Gaydadjiev G (2011) Multi-core platforms for beamforming and wave field synthesis. IEEE Trans Multimedia 3(2):235–245

Belloch JA, Badia MJ, Igual FD, Quintana-Ortí E, Cobos M (2017) Evaluating sound source localization on multi and many-core platform. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, vol 1. Rota, pp 279–286

Cobos M, Marti A, Lopez JJ (2011) A modified SRP-PHAT functional for robust real-time sound source localization with scalable spatial sampling. IEEE Signal Process Lett 18(1):71–74

Marti A, Cobos M, Lopez JJ (2013) A steered response power iterative method for high-accuracy acoustic source location. J Acoust Soc Am 134(4):2627–2630

Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231 (special issue on “Program generation, optimization, and platform adaptation”)

NVIDIA cuFFT library user’s guide (2018). https://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf . Accessed 21 May 2018

OpenCL fast Fourier transforms. http://clmathlibraries.github.io/clFFT . Accessed 21 May 2018

Scarpino M (2012) OpenCL in action: how to accelerate graphics and computation. Manning

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem