- -

Visibility graphs of fractional Wu-Baleanu time series

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Visibility graphs of fractional Wu-Baleanu time series

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Conejero, J. Alberto es_ES
dc.contributor.author Lizama, C. es_ES
dc.contributor.author Mira-Iglesias, Ainara es_ES
dc.contributor.author Rodero-Gómez, Cristóbal es_ES
dc.date.accessioned 2021-02-02T04:32:24Z
dc.date.available 2021-02-02T04:32:24Z
dc.date.issued 2019-10-03 es_ES
dc.identifier.issn 1023-6198 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160420
dc.description.abstract [EN] We study time series generated by the parametric family of fractional discrete maps introduced by Wu and Baleanu, presenting an alternative way of introducing these maps. For the values of the parameters that yield chaotic time series, we have studied the Shannon entropy of the degree distribution of the natural and horizontal visibility graphs associated to these series. In these cases, the degree distribution can be fitted with a power law. We have also compared the Shannon entropy and the exponent of the power law fitting for the different values of the fractionary exponent and the scaling factor of the model. Our results illustrate a connection between the fractionary exponent and the scaling factor of the maps, with the respect to the onset of the chaos. es_ES
dc.description.sponsorship J.A. Conejero is supported Ministerio de Economia y Competitividad Grant Project MTM2016-75963-P. Carlos Lizama is supported by CONICYT, under Fondecyt Grant number 1180041. Cristobal Rodero-Gomez is funded by European Commission H2020 research and Innovation programme under the Marie Sklodowska-Curie grant agreement No. 764738. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof The Journal of Difference Equations and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Discrete fractional calculus es_ES
dc.subject Caputo delta difference es_ES
dc.subject Logistic equation es_ES
dc.subject Visibility graphs es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Visibility graphs of fractional Wu-Baleanu time series es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/10236198.2019.1619714 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/764738/EU/Personalised In-Silico Cardiology/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICYT//1180041/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Conejero, JA.; Lizama, C.; Mira-Iglesias, A.; Rodero-Gómez, C. (2019). Visibility graphs of fractional Wu-Baleanu time series. The Journal of Difference Equations and Applications. 25(9-10):1321-1331. https://doi.org/10.1080/10236198.2019.1619714 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/10236198.2019.1619714 es_ES
dc.description.upvformatpinicio 1321 es_ES
dc.description.upvformatpfin 1331 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 9-10 es_ES
dc.relation.pasarela S\392378 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Comisión Nacional de Investigación Científica y Tecnológica, Chile es_ES
dc.description.references Anand, K., & Bianconi, G. (2009). Entropy measures for networks: Toward an information theory of complex topologies. Physical Review E, 80(4). doi:10.1103/physreve.80.045102 es_ES
dc.description.references Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509 es_ES
dc.description.references Brzeziński, D. W. (2017). Comparison of Fractional Order Derivatives Computational Accuracy - Right Hand vs Left Hand Definition. Applied Mathematics and Nonlinear Sciences, 2(1), 237-248. doi:10.21042/amns.2017.1.00020 es_ES
dc.description.references Brzeziński, D. W. (2018). Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus. Applied Mathematics and Nonlinear Sciences, 3(2), 487-502. doi:10.2478/amns.2018.2.00038 es_ES
dc.description.references DONNER, R. V., SMALL, M., DONGES, J. F., MARWAN, N., ZOU, Y., XIANG, R., & KURTHS, J. (2011). RECURRENCE-BASED TIME SERIES ANALYSIS BY MEANS OF COMPLEX NETWORK METHODS. International Journal of Bifurcation and Chaos, 21(04), 1019-1046. doi:10.1142/s0218127411029021 es_ES
dc.description.references Edelman, M. (2015). On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Grünvald-Letnikov fractional difference (differential) equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(7), 073103. doi:10.1063/1.4922834 es_ES
dc.description.references Edelman, M. (2018). On stability of fixed points and chaos in fractional systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(2), 023112. doi:10.1063/1.5016437 es_ES
dc.description.references Gao, Z.-K., Small, M., & Kurths, J. (2016). Complex network analysis of time series. EPL (Europhysics Letters), 116(5), 50001. doi:10.1209/0295-5075/116/50001 es_ES
dc.description.references Iacovacci, J., & Lacasa, L. (2016). Sequential visibility-graph motifs. Physical Review E, 93(4). doi:10.1103/physreve.93.042309 es_ES
dc.description.references Indahl, U. G., Naes, T., & Liland, K. H. (2018). A similarity index for comparing coupled matrices. Journal of Chemometrics, 32(10), e3049. doi:10.1002/cem.3049 es_ES
dc.description.references Kantz, H., & Schreiber, T. (2003). Nonlinear Time Series Analysis. doi:10.1017/cbo9780511755798 es_ES
dc.description.references Lacasa, L., & Iacovacci, J. (2017). Visibility graphs of random scalar fields and spatial data. Physical Review E, 96(1). doi:10.1103/physreve.96.012318 es_ES
dc.description.references Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuño, J. C. (2008). From time series to complex networks: The visibility graph. Proceedings of the National Academy of Sciences, 105(13), 4972-4975. doi:10.1073/pnas.0709247105 es_ES
dc.description.references Lizama, C. (2015). lp-maximal regularity for fractional difference equations on UMD spaces. Mathematische Nachrichten, 288(17-18), 2079-2092. doi:10.1002/mana.201400326 es_ES
dc.description.references Lizama, C. (2017). The Poisson distribution, abstract fractional difference equations, and stability. Proceedings of the American Mathematical Society, 145(9), 3809-3827. doi:10.1090/proc/12895 es_ES
dc.description.references Luque, B., Lacasa, L., Ballesteros, F., & Luque, J. (2009). Horizontal visibility graphs: Exact results for random time series. Physical Review E, 80(4). doi:10.1103/physreve.80.046103 es_ES
dc.description.references Luque, B., Lacasa, L., Ballesteros, F. J., & Robledo, A. (2011). Feigenbaum Graphs: A Complex Network Perspective of Chaos. PLoS ONE, 6(9), e22411. doi:10.1371/journal.pone.0022411 es_ES
dc.description.references Luque, B., Lacasa, L., & Robledo, A. (2012). Feigenbaum graphs at the onset of chaos. Physics Letters A, 376(47-48), 3625-3629. doi:10.1016/j.physleta.2012.10.050 es_ES
dc.description.references May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459-467. doi:10.1038/261459a0 es_ES
dc.description.references Núñez, Á. M., Luque, B., Lacasa, L., Gómez, J. P., & Robledo, A. (2013). Horizontal visibility graphs generated by type-I intermittency. Physical Review E, 87(5). doi:10.1103/physreve.87.052801 es_ES
dc.description.references Ravetti, M. G., Carpi, L. C., Gonçalves, B. A., Frery, A. C., & Rosso, O. A. (2014). Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph. PLoS ONE, 9(9), e108004. doi:10.1371/journal.pone.0108004 es_ES
dc.description.references Robledo, A. (2013). Generalized Statistical Mechanics at the Onset of Chaos. Entropy, 15(12), 5178-5222. doi:10.3390/e15125178 es_ES
dc.description.references Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x es_ES
dc.description.references Song, C., Havlin, S., & Makse, H. A. (2006). Origins of fractality in the growth of complex networks. Nature Physics, 2(4), 275-281. doi:10.1038/nphys266 es_ES
dc.description.references West, J., Lacasa, L., Severini, S., & Teschendorff, A. (2012). Approximate entropy of network parameters. Physical Review E, 85(4). doi:10.1103/physreve.85.046111 es_ES
dc.description.references Wu, G.-C., & Baleanu, D. (2013). Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 75(1-2), 283-287. doi:10.1007/s11071-013-1065-7 es_ES
dc.description.references Wu, G.-C., & Baleanu, D. (2014). Discrete chaos in fractional delayed logistic maps. Nonlinear Dynamics, 80(4), 1697-1703. doi:10.1007/s11071-014-1250-3 es_ES
dc.description.references Zhang, J., & Small, M. (2006). Complex Network from Pseudoperiodic Time Series: Topology versus Dynamics. Physical Review Letters, 96(23). doi:10.1103/physrevlett.96.238701 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem