Anand, K., & Bianconi, G. (2009). Entropy measures for networks: Toward an information theory of complex topologies. Physical Review E, 80(4). doi:10.1103/physreve.80.045102
Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509
Brzeziński, D. W. (2017). Comparison of Fractional Order Derivatives Computational Accuracy - Right Hand vs Left Hand Definition. Applied Mathematics and Nonlinear Sciences, 2(1), 237-248. doi:10.21042/amns.2017.1.00020
[+]
Anand, K., & Bianconi, G. (2009). Entropy measures for networks: Toward an information theory of complex topologies. Physical Review E, 80(4). doi:10.1103/physreve.80.045102
Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509
Brzeziński, D. W. (2017). Comparison of Fractional Order Derivatives Computational Accuracy - Right Hand vs Left Hand Definition. Applied Mathematics and Nonlinear Sciences, 2(1), 237-248. doi:10.21042/amns.2017.1.00020
Brzeziński, D. W. (2018). Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus. Applied Mathematics and Nonlinear Sciences, 3(2), 487-502. doi:10.2478/amns.2018.2.00038
DONNER, R. V., SMALL, M., DONGES, J. F., MARWAN, N., ZOU, Y., XIANG, R., & KURTHS, J. (2011). RECURRENCE-BASED TIME SERIES ANALYSIS BY MEANS OF COMPLEX NETWORK METHODS. International Journal of Bifurcation and Chaos, 21(04), 1019-1046. doi:10.1142/s0218127411029021
Edelman, M. (2015). On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Grünvald-Letnikov fractional difference (differential) equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(7), 073103. doi:10.1063/1.4922834
Edelman, M. (2018). On stability of fixed points and chaos in fractional systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(2), 023112. doi:10.1063/1.5016437
Gao, Z.-K., Small, M., & Kurths, J. (2016). Complex network analysis of time series. EPL (Europhysics Letters), 116(5), 50001. doi:10.1209/0295-5075/116/50001
Iacovacci, J., & Lacasa, L. (2016). Sequential visibility-graph motifs. Physical Review E, 93(4). doi:10.1103/physreve.93.042309
Indahl, U. G., Naes, T., & Liland, K. H. (2018). A similarity index for comparing coupled matrices. Journal of Chemometrics, 32(10), e3049. doi:10.1002/cem.3049
Kantz, H., & Schreiber, T. (2003). Nonlinear Time Series Analysis. doi:10.1017/cbo9780511755798
Lacasa, L., & Iacovacci, J. (2017). Visibility graphs of random scalar fields and spatial data. Physical Review E, 96(1). doi:10.1103/physreve.96.012318
Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuño, J. C. (2008). From time series to complex networks: The visibility graph. Proceedings of the National Academy of Sciences, 105(13), 4972-4975. doi:10.1073/pnas.0709247105
Lizama, C. (2015). lp-maximal regularity for fractional difference equations on UMD spaces. Mathematische Nachrichten, 288(17-18), 2079-2092. doi:10.1002/mana.201400326
Lizama, C. (2017). The Poisson distribution, abstract fractional difference equations, and stability. Proceedings of the American Mathematical Society, 145(9), 3809-3827. doi:10.1090/proc/12895
Luque, B., Lacasa, L., Ballesteros, F., & Luque, J. (2009). Horizontal visibility graphs: Exact results for random time series. Physical Review E, 80(4). doi:10.1103/physreve.80.046103
Luque, B., Lacasa, L., Ballesteros, F. J., & Robledo, A. (2011). Feigenbaum Graphs: A Complex Network Perspective of Chaos. PLoS ONE, 6(9), e22411. doi:10.1371/journal.pone.0022411
Luque, B., Lacasa, L., & Robledo, A. (2012). Feigenbaum graphs at the onset of chaos. Physics Letters A, 376(47-48), 3625-3629. doi:10.1016/j.physleta.2012.10.050
May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459-467. doi:10.1038/261459a0
Núñez, Á. M., Luque, B., Lacasa, L., Gómez, J. P., & Robledo, A. (2013). Horizontal visibility graphs generated by type-I intermittency. Physical Review E, 87(5). doi:10.1103/physreve.87.052801
Ravetti, M. G., Carpi, L. C., Gonçalves, B. A., Frery, A. C., & Rosso, O. A. (2014). Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph. PLoS ONE, 9(9), e108004. doi:10.1371/journal.pone.0108004
Robledo, A. (2013). Generalized Statistical Mechanics at the Onset of Chaos. Entropy, 15(12), 5178-5222. doi:10.3390/e15125178
Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x
Song, C., Havlin, S., & Makse, H. A. (2006). Origins of fractality in the growth of complex networks. Nature Physics, 2(4), 275-281. doi:10.1038/nphys266
West, J., Lacasa, L., Severini, S., & Teschendorff, A. (2012). Approximate entropy of network parameters. Physical Review E, 85(4). doi:10.1103/physreve.85.046111
Wu, G.-C., & Baleanu, D. (2013). Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 75(1-2), 283-287. doi:10.1007/s11071-013-1065-7
Wu, G.-C., & Baleanu, D. (2014). Discrete chaos in fractional delayed logistic maps. Nonlinear Dynamics, 80(4), 1697-1703. doi:10.1007/s11071-014-1250-3
Zhang, J., & Small, M. (2006). Complex Network from Pseudoperiodic Time Series: Topology versus Dynamics. Physical Review Letters, 96(23). doi:10.1103/physrevlett.96.238701
[-]