- -

Visibility graphs of fractional Wu-Baleanu time series

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Visibility graphs of fractional Wu-Baleanu time series

Mostrar el registro completo del ítem

Conejero, JA.; Lizama, C.; Mira-Iglesias, A.; Rodero-Gómez, C. (2019). Visibility graphs of fractional Wu-Baleanu time series. The Journal of Difference Equations and Applications. 25(9-10):1321-1331. https://doi.org/10.1080/10236198.2019.1619714

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160420

Ficheros en el ítem

Metadatos del ítem

Título: Visibility graphs of fractional Wu-Baleanu time series
Autor: Conejero, J. Alberto Lizama, C. Mira-Iglesias, Ainara Rodero-Gómez, Cristóbal
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We study time series generated by the parametric family of fractional discrete maps introduced by Wu and Baleanu, presenting an alternative way of introducing these maps. For the values of the parameters that yield ...[+]
Palabras clave: Discrete fractional calculus , Caputo delta difference , Logistic equation , Visibility graphs
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Difference Equations and Applications. (issn: 1023-6198 )
DOI: 10.1080/10236198.2019.1619714
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/10236198.2019.1619714
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/764738/EU/Personalised In-Silico Cardiology/
info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/
info:eu-repo/grantAgreement/CONICYT//1180041/
Agradecimientos:
J.A. Conejero is supported Ministerio de Economia y Competitividad Grant Project MTM2016-75963-P. Carlos Lizama is supported by CONICYT, under Fondecyt Grant number 1180041. Cristobal Rodero-Gomez is funded by European ...[+]
Tipo: Artículo

References

Anand, K., & Bianconi, G. (2009). Entropy measures for networks: Toward an information theory of complex topologies. Physical Review E, 80(4). doi:10.1103/physreve.80.045102

Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509

Brzeziński, D. W. (2017). Comparison of Fractional Order Derivatives Computational Accuracy - Right Hand vs Left Hand Definition. Applied Mathematics and Nonlinear Sciences, 2(1), 237-248. doi:10.21042/amns.2017.1.00020 [+]
Anand, K., & Bianconi, G. (2009). Entropy measures for networks: Toward an information theory of complex topologies. Physical Review E, 80(4). doi:10.1103/physreve.80.045102

Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509

Brzeziński, D. W. (2017). Comparison of Fractional Order Derivatives Computational Accuracy - Right Hand vs Left Hand Definition. Applied Mathematics and Nonlinear Sciences, 2(1), 237-248. doi:10.21042/amns.2017.1.00020

Brzeziński, D. W. (2018). Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus. Applied Mathematics and Nonlinear Sciences, 3(2), 487-502. doi:10.2478/amns.2018.2.00038

DONNER, R. V., SMALL, M., DONGES, J. F., MARWAN, N., ZOU, Y., XIANG, R., & KURTHS, J. (2011). RECURRENCE-BASED TIME SERIES ANALYSIS BY MEANS OF COMPLEX NETWORK METHODS. International Journal of Bifurcation and Chaos, 21(04), 1019-1046. doi:10.1142/s0218127411029021

Edelman, M. (2015). On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Grünvald-Letnikov fractional difference (differential) equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(7), 073103. doi:10.1063/1.4922834

Edelman, M. (2018). On stability of fixed points and chaos in fractional systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(2), 023112. doi:10.1063/1.5016437

Gao, Z.-K., Small, M., & Kurths, J. (2016). Complex network analysis of time series. EPL (Europhysics Letters), 116(5), 50001. doi:10.1209/0295-5075/116/50001

Iacovacci, J., & Lacasa, L. (2016). Sequential visibility-graph motifs. Physical Review E, 93(4). doi:10.1103/physreve.93.042309

Indahl, U. G., Naes, T., & Liland, K. H. (2018). A similarity index for comparing coupled matrices. Journal of Chemometrics, 32(10), e3049. doi:10.1002/cem.3049

Kantz, H., & Schreiber, T. (2003). Nonlinear Time Series Analysis. doi:10.1017/cbo9780511755798

Lacasa, L., & Iacovacci, J. (2017). Visibility graphs of random scalar fields and spatial data. Physical Review E, 96(1). doi:10.1103/physreve.96.012318

Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuño, J. C. (2008). From time series to complex networks: The visibility graph. Proceedings of the National Academy of Sciences, 105(13), 4972-4975. doi:10.1073/pnas.0709247105

Lizama, C. (2015). lp-maximal regularity for fractional difference equations on UMD spaces. Mathematische Nachrichten, 288(17-18), 2079-2092. doi:10.1002/mana.201400326

Lizama, C. (2017). The Poisson distribution, abstract fractional difference equations, and stability. Proceedings of the American Mathematical Society, 145(9), 3809-3827. doi:10.1090/proc/12895

Luque, B., Lacasa, L., Ballesteros, F., & Luque, J. (2009). Horizontal visibility graphs: Exact results for random time series. Physical Review E, 80(4). doi:10.1103/physreve.80.046103

Luque, B., Lacasa, L., Ballesteros, F. J., & Robledo, A. (2011). Feigenbaum Graphs: A Complex Network Perspective of Chaos. PLoS ONE, 6(9), e22411. doi:10.1371/journal.pone.0022411

Luque, B., Lacasa, L., & Robledo, A. (2012). Feigenbaum graphs at the onset of chaos. Physics Letters A, 376(47-48), 3625-3629. doi:10.1016/j.physleta.2012.10.050

May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459-467. doi:10.1038/261459a0

Núñez, Á. M., Luque, B., Lacasa, L., Gómez, J. P., & Robledo, A. (2013). Horizontal visibility graphs generated by type-I intermittency. Physical Review E, 87(5). doi:10.1103/physreve.87.052801

Ravetti, M. G., Carpi, L. C., Gonçalves, B. A., Frery, A. C., & Rosso, O. A. (2014). Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph. PLoS ONE, 9(9), e108004. doi:10.1371/journal.pone.0108004

Robledo, A. (2013). Generalized Statistical Mechanics at the Onset of Chaos. Entropy, 15(12), 5178-5222. doi:10.3390/e15125178

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x

Song, C., Havlin, S., & Makse, H. A. (2006). Origins of fractality in the growth of complex networks. Nature Physics, 2(4), 275-281. doi:10.1038/nphys266

West, J., Lacasa, L., Severini, S., & Teschendorff, A. (2012). Approximate entropy of network parameters. Physical Review E, 85(4). doi:10.1103/physreve.85.046111

Wu, G.-C., & Baleanu, D. (2013). Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 75(1-2), 283-287. doi:10.1007/s11071-013-1065-7

Wu, G.-C., & Baleanu, D. (2014). Discrete chaos in fractional delayed logistic maps. Nonlinear Dynamics, 80(4), 1697-1703. doi:10.1007/s11071-014-1250-3

Zhang, J., & Small, M. (2006). Complex Network from Pseudoperiodic Time Series: Topology versus Dynamics. Physical Review Letters, 96(23). doi:10.1103/physrevlett.96.238701

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem