- -

Data-driven modeling of electron recoil nucleation in PICO C3F8 bubble chambers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Data-driven modeling of electron recoil nucleation in PICO C3F8 bubble chambers

Show full item record

Amole, C.; Ardid Ramírez, M.; Arnquist, I.; Asner, DM.; Baxter, D.; Behnke, E.; Bressler, M.... (2019). Data-driven modeling of electron recoil nucleation in PICO C3F8 bubble chambers. Physical Review D: covering particles, fields, gravitation, and cosmology. 100(8):1-18. https://doi.org/10.1103/PhysRevD.100.082006

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160421

Files in this item

Item Metadata

Title: Data-driven modeling of electron recoil nucleation in PICO C3F8 bubble chambers
Author: Amole, C. Ardid Ramírez, Miguel Arnquist, I.J. Asner, D. M. Baxter, D. Behnke, E. Bressler, M. Broerman, B. Cao, G. Chen, C. J. Chen, S. Chowdhury, U. Clark, K. Collar, J. I. Cooper, P. S.
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] The primary advantage of moderately superheated bubble chamber detectors is their simultaneous sensitivity to nuclear recoils from weakly interacting massive particle (WIMP) dark matter and insensitivity to electron ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Physical Review D: covering particles, fields, gravitation, and cosmology. (eissn: 2470-0010 )
DOI: 10.1103/PhysRevD.100.082006
Publisher:
American Physical Society
Publisher version: https://doi.org/10.1103/PhysRevD.100.082006
Project ID:
info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/
...[+]
info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/
info:eu-repo/grantAgreement/NSF//0919526/US/COUPP-500 kg: Design of a large-Mass Bubble Chamber for Dark Matter Detection/
info:eu-repo/grantAgreement/NSF//1806722/US/PICO-500: Improving Acoustic Particle Identification in Superheated-Liquid WIMP Detectors/
info:eu-repo/grantAgreement/NSF//1506337/US/
info:eu-repo/grantAgreement/NSF//1242637/US/Construction of the COUPP-500kg Bubble Chamber for Dark Matter Detection/
info:eu-repo/grantAgreement/NSF//1205987/US/RUI: Searching for WIMP Dark Matter With Superheated Liquids/
info:eu-repo/grantAgreement/MSMT//CZ.02.1.01%2F0.0%2F0.0%2F16_019%2F0000766/CZ/Engineering applications of microworld physics/
info:eu-repo/grantAgreement/AEI//FPA2017-90566-REDC/ES/RED CONSOLIDER MULTIDARK/
info:eu-repo/grantAgreement/UNAM/PAPIIT/IA100118/MX/Análisis y simulación de ruidos de fondo en experimentos de neutrinos y de búsqueda de materia oscura/
info:eu-repo/grantAgreement/CONACyT//A1-S-8960/
info:eu-repo/grantAgreement/DOE//DE-AC05-76RL01830/
info:eu-repo/grantAgreement/UChicago//1125897/
info:eu-repo/grantAgreement/DOE//DE-SC-0012161/
info:eu-repo/grantAgreement/CONACyT//252167/
[-]
Thanks:
The PICO Collaboration wishes to thank SNOLAB and its staff for support through underground space, logistical and technical services. SNOLAB operations are supported by the Canada Foundation for Innovation and the ...[+]
Type: Artículo

References

Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Chen, C. J. (2019). Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber. Physical Review D, 100(2). doi:10.1103/physrevd.100.022001

Agnese, R., Anderson, A. J., Aramaki, T., Arnquist, I., Baker, W., Barker, D., … Bowles, M. A. (2017). Projected sensitivity of the SuperCDMS SNOLAB experiment. Physical Review D, 95(8). doi:10.1103/physrevd.95.082002

Amaudruz, P.-A., Baldwin, M., Batygov, M., Beltran, B., Bina, C. E., Bishop, D., … Broerman, B. (2018). First Results from the DEAP-3600 Dark Matter Search with Argon at SNOLAB. Physical Review Letters, 121(7). doi:10.1103/physrevlett.121.071801 [+]
Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Chen, C. J. (2019). Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber. Physical Review D, 100(2). doi:10.1103/physrevd.100.022001

Agnese, R., Anderson, A. J., Aramaki, T., Arnquist, I., Baker, W., Barker, D., … Bowles, M. A. (2017). Projected sensitivity of the SuperCDMS SNOLAB experiment. Physical Review D, 95(8). doi:10.1103/physrevd.95.082002

Amaudruz, P.-A., Baldwin, M., Batygov, M., Beltran, B., Bina, C. E., Bishop, D., … Broerman, B. (2018). First Results from the DEAP-3600 Dark Matter Search with Argon at SNOLAB. Physical Review Letters, 121(7). doi:10.1103/physrevlett.121.071801

Arnaud, Q., Asner, D., Bard, J.-P., Brossard, A., Cai, B., Chapellier, M., … Zampaolo, M. (2018). First results from the NEWS-G direct dark matter search experiment at the LSM. Astroparticle Physics, 97, 54-62. doi:10.1016/j.astropartphys.2017.10.009

Aguilar-Arevalo, A., Amidei, D., Bertou, X., Butner, M., Cancelo, G., … Castañeda Vázquez, A. (2016). Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB. Physical Review D, 94(8). doi:10.1103/physrevd.94.082006

Aalseth, C. E., Acerbi, F., Agnes, P., Albuquerque, I. F. M., Alexander, T., Alici, A., … Ardito, R. (2018). DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. The European Physical Journal Plus, 133(3). doi:10.1140/epjp/i2018-11973-4

Jungman, G., Kamionkowski, M., & Griest, K. (1996). Supersymmetric dark matter. Physics Reports, 267(5-6), 195-373. doi:10.1016/0370-1573(95)00058-5

Bertone, G., Hooper, D., & Silk, J. (2005). Particle dark matter: evidence, candidates and constraints. Physics Reports, 405(5-6), 279-390. doi:10.1016/j.physrep.2004.08.031

Feng, J. L. (2010). Dark Matter Candidates from Particle Physics and Methods of Detection. Annual Review of Astronomy and Astrophysics, 48(1), 495-545. doi:10.1146/annurev-astro-082708-101659

Duncan, F., Noble, A. J., & Sinclair, D. (2010). The Construction and Anticipated Science of SNOLAB. Annual Review of Nuclear and Particle Science, 60(1), 163-180. doi:10.1146/annurev.nucl.012809.104513

Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Conner, A. (2012). First dark matter search results from a 4-kgCF3Ibubble chamber operated in a deep underground site. Physical Review D, 86(5). doi:10.1103/physrevd.86.052001

Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Conner, A. (2014). Erratum: First dark matter search results from a 4-kgCF3Ibubble chamber operated in a deep underground site [Phys. Rev. D86, 052001 (2012)]. Physical Review D, 90(7). doi:10.1103/physrevd.90.079902

Aubin, F., Auger, M., Genest, M.-H., Giroux, G., Gornea, R., Faust, R., … Storey, C. (2008). Discrimination of nuclear recoils from alpha particles with superheated liquids. New Journal of Physics, 10(10), 103017. doi:10.1088/1367-2630/10/10/103017

Zacek, V. (1994). Search for dark matter with moderately superheated liquids. Il Nuovo Cimento A, 107(2), 291-298. doi:10.1007/bf02781560

Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2016). Dark matter search results from the PICO-60CF3Ibubble chamber. Physical Review D, 93(5). doi:10.1103/physrevd.93.052014

Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Campion, P. (2017). Dark Matter Search Results from the PICO−60 C3F8 Bubble Chamber. Physical Review Letters, 118(25). doi:10.1103/physrevlett.118.251301

Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Brice, S. J. (2016). Improved dark matter search results from PICO-2L Run 2. Physical Review D, 93(6). doi:10.1103/physrevd.93.061101

Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2015). Dark Matter Search Results from the PICO-2LC3F8Bubble Chamber. Physical Review Letters, 114(23). doi:10.1103/physrevlett.114.231302

Hasert, F. J., Faissner, H., Krenz, W., Von Krogh, J., Lanske, D., Morfin, J., … Lemonne, J. (1973). Search for elastic muon-neutrino electron scattering. Physics Letters B, 46(1), 121-124. doi:10.1016/0370-2693(73)90494-2

Hasert, F. J., Kabe, S., Krenz, W., Von Krogh, J., Lanske, D., Morfin, J., … Sacton, J. (1973). Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment. Physics Letters B, 46(1), 138-140. doi:10.1016/0370-2693(73)90499-1

Behnke, E., Benjamin, T., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Cooper, P. S. (2013). Direct measurement of the bubble-nucleation energy threshold in aCF3Ibubble chamber. Physical Review D, 88(2). doi:10.1103/physrevd.88.021101

Tenner, A. G. (1963). Nucleation in bubble chambers. Nuclear Instruments and Methods, 22, 1-42. doi:10.1016/0029-554x(63)90224-6

Kozynets, T., Fallows, S., & Krauss, C. B. (2019). Modeling emission of acoustic energy during bubble expansion in PICO bubble chambers. Physical Review D, 100(5). doi:10.1103/physrevd.100.052001

Seitz, F. (1958). On the Theory of the Bubble Chamber. Physics of Fluids, 1(1), 2. doi:10.1063/1.1724333

Behnke, E., Collar, J. I., Cooper, P. S., Crum, K., Crisler, M., Hu, M., … Tschirhart, R. (2008). Spin-Dependent WIMP Limits from a Bubble Chamber. Science, 319(5865), 933-936. doi:10.1126/science.1149999

Barnabé-Heider, M., Di Marco, M., Doane, P., Genest, M.-H., Gornea, R., Guénette, R., … Noulty, R. (2005). Response of superheated droplet detectors of the PICASSO dark matter search experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1-2), 184-204. doi:10.1016/j.nima.2005.09.015

Ziegler, J. F., Ziegler, M. D., & Biersack, J. P. (2010). SRIM – The stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(11-12), 1818-1823. doi:10.1016/j.nimb.2010.02.091

Bressler, M., Campion, P., Cushman, V. S., Morrese, A., Wagner, J. M., Zerbo, S., … Dahl, C. E. (2019). A buffer-free concept bubble chamber for PICO dark matter searches. Journal of Instrumentation, 14(08), P08019-P08019. doi:10.1088/1748-0221/14/08/p08019

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8

Pozzi, S. A., Padovani, E., & Marseguerra, M. (2003). MCNP-PoliMi: a Monte-Carlo code for correlation measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 513(3), 550-558. doi:10.1016/j.nima.2003.06.012

Archambault, S., Aubin, F., Auger, M., Beleshi, M., Behnke, E., … Behnke, J. (2011). New insights into particle detection with superheated liquids. New Journal of Physics, 13(4), 043006. doi:10.1088/1367-2630/13/4/043006

Glaser, D. A. (1954). Progress report on the development of bubble chambers. Il Nuovo Cimento, 11(S2), 361-368. doi:10.1007/bf02781098

Fabian, B. N., Place, R. L., Riley, W. A., Sims, W. H., & Kenney, V. P. (1963). Density of Particle Tracks in the Hydrogen Bubble Chamber. Review of Scientific Instruments, 34(5), 484-495. doi:10.1063/1.1718415

Willis, W. J., Fowler, E. C., & Rahm, D. C. (1957). Bubble Density in a Propane Bubble Chamber. Physical Review, 108(4), 1046-1047. doi:10.1103/physrev.108.1046

Hahn, B., & Hugentobler, E. (1960). Relativistic increase in bubble density in a CBrF3 bubble chamber. Il Nuovo Cimento, 17(6), 983-985. doi:10.1007/bf02732145

Brown, J. L., Glaser, D. A., & Perl, M. L. (1956). Liquid Xenon Bubble Chamber. Physical Review, 102(2), 586-587. doi:10.1103/physrev.102.586

Baxter, D., Chen, C. J., Crisler, M., Cwiok, T., Dahl, C. E., Grimsted, A., … Zhang, J. (2017). First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering. Physical Review Letters, 118(23). doi:10.1103/physrevlett.118.231301

Durup, J., & Platzman, R. L. (1961). Role of the Auger effect in the displacement of atoms in solids by ionizing radiation. Discussions of the Faraday Society, 31, 156. doi:10.1039/df9613100156

Schönfeld, E., & Janßen, H. (2000). Calculation of emission probabilities of X-rays and Auger electrons emitted in radioactive disintegration processes. Applied Radiation and Isotopes, 52(3), 595-600. doi:10.1016/s0969-8043(99)00216-x

Strigari, L. E. (2009). Neutrino coherent scattering rates at direct dark matter detectors. New Journal of Physics, 11(10), 105011. doi:10.1088/1367-2630/11/10/105011

Lewin, J. D., & Smith, P. F. (1996). Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astroparticle Physics, 6(1), 87-112. doi:10.1016/s0927-6505(96)00047-3

Fitzpatrick, A. L., Haxton, W., Katz, E., Lubbers, N., & Xu, Y. (2013). The effective field theory of dark matter direct detection. Journal of Cosmology and Astroparticle Physics, 2013(02), 004-004. doi:10.1088/1475-7516/2013/02/004

Anand, N., Fitzpatrick, A. L., & Haxton, W. C. (2014). Weakly interacting massive particle-nucleus elastic scattering response. Physical Review C, 89(6). doi:10.1103/physrevc.89.065501

Gresham, M. I., & Zurek, K. M. (2014). Effect of nuclear response functions in dark matter direct detection. Physical Review D, 89(12). doi:10.1103/physrevd.89.123521

Gluscevic, V., Gresham, M. I., McDermott, S. D., Peter, A. H. G., & Zurek, K. M. (2015). Identifying the theory of dark matter with direct detection. Journal of Cosmology and Astroparticle Physics, 2015(12), 057-057. doi:10.1088/1475-7516/2015/12/057

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., … Baudis, L. (2019). Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T. Physical Review Letters, 122(14). doi:10.1103/physrevlett.122.141301

Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., … Biesiadzinski, T. P. (2017). Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure. Physical Review Letters, 118(25). doi:10.1103/physrevlett.118.251302

Fu, C., Cui, X., Zhou, X., Chen, X., Chen, Y., … Fang, D. (2017). Spin-Dependent Weakly-Interacting-Massive-Particle–Nucleon Cross Section Limits from First Data of PandaX-II Experiment. Physical Review Letters, 118(7). doi:10.1103/physrevlett.118.071301

Behnke, E., Besnier, M., Bhattacharjee, P., Dai, X., Das, M., Davour, A., … Zacek, V. (2017). Final results of the PICASSO dark matter search experiment. Astroparticle Physics, 90, 85-92. doi:10.1016/j.astropartphys.2017.02.005

Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). Search for annihilating dark matter in the Sun with 3 years of IceCube data. The European Physical Journal C, 77(3). doi:10.1140/epjc/s10052-017-4689-9

Choi, K., Abe, K., Haga, Y., Hayato, Y., Iyogi, K., Kameda, J., … Nakahata, M. (2015). Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande. Physical Review Letters, 114(14). doi:10.1103/physrevlett.114.141301

Ruppin, F., Billard, J., Figueroa-Feliciano, E., & Strigari, L. (2014). Complementarity of dark matter detectors in light of the neutrino background. Physical Review D, 90(8). doi:10.1103/physrevd.90.083510

Felizardo, M., Girard, T. A., Morlat, T., Fernandes, A. C., Ramos, A. R., Marques, J. G., … Marques, R. (2014). The SIMPLE Phase II dark matter search. Physical Review D, 89(7). doi:10.1103/physrevd.89.072013

Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Physics Letters B, 759, 69-74. doi:10.1016/j.physletb.2016.05.019

Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2016(05), 016-016. doi:10.1088/1475-7516/2016/05/016

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., … Bauermeister, B. (2018). Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Physical Review Letters, 121(11). doi:10.1103/physrevlett.121.111302

Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., … Biesiadzinski, T. P. (2017). Results from a Search for Dark Matter in the Complete LUX Exposure. Physical Review Letters, 118(2). doi:10.1103/physrevlett.118.021303

Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Araujo, G. R., Asner, D. M., … Batignani, G. (2018). Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Physical Review Letters, 121(8). doi:10.1103/physrevlett.121.081307

Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Araujo, G. R., Ave, M., … Biery, K. (2018). DarkSide-50 532-day dark matter search with low-radioactivity argon. Physical Review D, 98(10). doi:10.1103/physrevd.98.102006

Agnese, R., Anderson, A. J., Aralis, T., Aramaki, T., Arnquist, I. J., Baker, W., … Bauer, D. A. (2018). Low-mass dark matter search with CDMSlite. Physical Review D, 97(2). doi:10.1103/physrevd.97.022002

Agnese, R., Aramaki, T., Arnquist, I. J., Baker, W., Balakishiyeva, D., Banik, S., … Binder, T. (2018). Results from the Super Cryogenic Dark Matter Search Experiment at Soudan. Physical Review Letters, 120(6). doi:10.1103/physrevlett.120.061802

Hehn, L., Armengaud, E., Arnaud, Q., Augier, C., Benoît, A., Bergé, L., … Yakushev, E. (2016). Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach. The European Physical Journal C, 76(10). doi:10.1140/epjc/s10052-016-4388-y

Tolman, R. C. (1949). The Effect of Droplet Size on Surface Tension. The Journal of Chemical Physics, 17(3), 333-337. doi:10.1063/1.1747247

Kirkwood, J. G., & Buff, F. P. (1949). The Statistical Mechanical Theory of Surface Tension. The Journal of Chemical Physics, 17(3), 338-343. doi:10.1063/1.1747248

Xue, Y.-Q., Yang, X.-C., Cui, Z.-X., & Lai, W.-P. (2010). The Effect of Microdroplet Size on the Surface Tension and Tolman Length. The Journal of Physical Chemistry B, 115(1), 109-112. doi:10.1021/jp1084313

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record