- -

Data-driven modeling of electron recoil nucleation in PICO C3F8 bubble chambers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Data-driven modeling of electron recoil nucleation in PICO C3F8 bubble chambers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Amole, C. es_ES
dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.contributor.author Arnquist, I.J. es_ES
dc.contributor.author Asner, D. M. es_ES
dc.contributor.author Baxter, D. es_ES
dc.contributor.author Behnke, E. es_ES
dc.contributor.author Bressler, M. es_ES
dc.contributor.author Broerman, B. es_ES
dc.contributor.author Cao, G. es_ES
dc.contributor.author Chen, C. J. es_ES
dc.contributor.author Chen, S. es_ES
dc.contributor.author Chowdhury, U. es_ES
dc.contributor.author Clark, K. es_ES
dc.contributor.author Collar, J. I. es_ES
dc.contributor.author Cooper, P. S. es_ES
dc.date.accessioned 2021-02-02T04:32:29Z
dc.date.available 2021-02-02T04:32:29Z
dc.date.issued 2019-10-31 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160421
dc.description.abstract [EN] The primary advantage of moderately superheated bubble chamber detectors is their simultaneous sensitivity to nuclear recoils from weakly interacting massive particle (WIMP) dark matter and insensitivity to electron recoil backgrounds. A comprehensive analysis of PICO gamma calibration data demonstrates for the first time that electron recoils in C3F8 scale in accordance with a new nucleation mechanism, rather than one driven by a hot spike as previously supposed. Using this semiempirical model, bubble chamber nucleation thresholds may be tuned to be sensitive to lower energy nuclear recoils while maintaining excellent electron recoil rejection. The PICO-40L detector will exploit this model to achieve thermodynamic thresholds as low as 2.8 keV while being dominated by single-scatter events from coherent elastic neutrino-nucleus scattering of solar neutrinos. In one year of operation, PICO-401, can improve existing leading limits from PICO on spin-dependent WIMP-proton coupling by nearly an order of magnitude for WIMP masses greater than 3 GeV c(-2) and will have the ability to surpass all existing non-xenon bounds on spin-independent WIMP-nucleon coupling for WIMP masses from 3 to 40 GeV c(-2). es_ES
dc.description.sponsorship The PICO Collaboration wishes to thank SNOLAB and its staff for support through underground space, logistical and technical services. SNOLAB operations are supported by the Canada Foundation for Innovation and the Province of Ontario Ministry of Research and Innovation, with underground access provided by Vale at the Creighton mine site. We wish to acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) for funding. We acknowledge the support from National Science Foundation (NSF) (Grants No. 0919526, No. 1506337, No. 1242637, No. 1205987, and No. 1806722). We acknowledge that this work is supported by the U.S. Department of Energy (DOE) Office of Science, Office of High Energy Physics (under Award No. DE-SC-0012161), by DGAPA-UNAM (PAPIIT No. IA100118) and Consejo Nacional de Ciencia y Tecnología (CONACyT, M¿exico, Grants No. 252167 and No. A1-S-8960), by the Department of Atomic Energy (DAE), Government of India, under the Centre for AstroParticle Physics II project (CAPP-II) at the Saha Institute of Nuclear Physics (SINP), European Regional Development Fund¿Project ¿Engineering Applications of Microworld Physics¿ (Project No. CZ.02.1.01/0.0/0.0/ 16_019/0000766), and the Spanish Ministerio de Ciencia, Innovación y Universidades (Red Consolider MultiDark, Grant No. FPA2017-90566-REDC). This work is partially supported by the Kavli Institute for Cosmological Physics at the University of Chicago through NSF Grant No. 1125897, and an endowment from the Kavli Foundation and its founder Fred Kavli. We also wish to acknowledge the support from Fermi National Accelerator Laboratory under Contract No. DE-AC02-07CH11359, and Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05- 76RL01830. We also thank Compute Canada [75] and the Center for Advanced Computing, ACENET, Calcul Qu¿ebec, Compute Ontario, and WestGrid for computational support. es_ES
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review D: covering particles, fields, gravitation, and cosmology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Data-driven modeling of electron recoil nucleation in PICO C3F8 bubble chambers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevD.100.082006 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//0919526/US/COUPP-500 kg: Design of a large-Mass Bubble Chamber for Dark Matter Detection/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1806722/US/PICO-500: Improving Acoustic Particle Identification in Superheated-Liquid WIMP Detectors/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1506337/US/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1242637/US/Construction of the COUPP-500kg Bubble Chamber for Dark Matter Detection/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1205987/US/RUI: Searching for WIMP Dark Matter With Superheated Liquids/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MSMT//CZ.02.1.01%2F0.0%2F0.0%2F16_019%2F0000766/CZ/Engineering applications of microworld physics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//FPA2017-90566-REDC/ES/RED CONSOLIDER MULTIDARK/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM/PAPIIT/IA100118/MX/Análisis y simulación de ruidos de fondo en experimentos de neutrinos y de búsqueda de materia oscura/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//A1-S-8960/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC05-76RL01830/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UChicago//1125897/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-SC-0012161/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//252167/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Amole, C.; Ardid Ramírez, M.; Arnquist, I.; Asner, DM.; Baxter, D.; Behnke, E.; Bressler, M.... (2019). Data-driven modeling of electron recoil nucleation in PICO C3F8 bubble chambers. Physical Review D: covering particles, fields, gravitation, and cosmology. 100(8):1-18. https://doi.org/10.1103/PhysRevD.100.082006 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1103/PhysRevD.100.082006 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 100 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2470-0010 es_ES
dc.relation.pasarela S\409848 es_ES
dc.contributor.funder Kavli Foundation es_ES
dc.contributor.funder Ministry of Education, Youth and Sports, República Checa es_ES
dc.contributor.funder University of Chicago es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Canada Foundation for Innovation es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.contributor.funder Department of Atomic Energy, Government of India es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Chen, C. J. (2019). Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber. Physical Review D, 100(2). doi:10.1103/physrevd.100.022001 es_ES
dc.description.references Agnese, R., Anderson, A. J., Aramaki, T., Arnquist, I., Baker, W., Barker, D., … Bowles, M. A. (2017). Projected sensitivity of the SuperCDMS SNOLAB experiment. Physical Review D, 95(8). doi:10.1103/physrevd.95.082002 es_ES
dc.description.references Amaudruz, P.-A., Baldwin, M., Batygov, M., Beltran, B., Bina, C. E., Bishop, D., … Broerman, B. (2018). First Results from the DEAP-3600 Dark Matter Search with Argon at SNOLAB. Physical Review Letters, 121(7). doi:10.1103/physrevlett.121.071801 es_ES
dc.description.references Arnaud, Q., Asner, D., Bard, J.-P., Brossard, A., Cai, B., Chapellier, M., … Zampaolo, M. (2018). First results from the NEWS-G direct dark matter search experiment at the LSM. Astroparticle Physics, 97, 54-62. doi:10.1016/j.astropartphys.2017.10.009 es_ES
dc.description.references Aguilar-Arevalo, A., Amidei, D., Bertou, X., Butner, M., Cancelo, G., … Castañeda Vázquez, A. (2016). Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB. Physical Review D, 94(8). doi:10.1103/physrevd.94.082006 es_ES
dc.description.references Aalseth, C. E., Acerbi, F., Agnes, P., Albuquerque, I. F. M., Alexander, T., Alici, A., … Ardito, R. (2018). DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. The European Physical Journal Plus, 133(3). doi:10.1140/epjp/i2018-11973-4 es_ES
dc.description.references Jungman, G., Kamionkowski, M., & Griest, K. (1996). Supersymmetric dark matter. Physics Reports, 267(5-6), 195-373. doi:10.1016/0370-1573(95)00058-5 es_ES
dc.description.references Bertone, G., Hooper, D., & Silk, J. (2005). Particle dark matter: evidence, candidates and constraints. Physics Reports, 405(5-6), 279-390. doi:10.1016/j.physrep.2004.08.031 es_ES
dc.description.references Feng, J. L. (2010). Dark Matter Candidates from Particle Physics and Methods of Detection. Annual Review of Astronomy and Astrophysics, 48(1), 495-545. doi:10.1146/annurev-astro-082708-101659 es_ES
dc.description.references Duncan, F., Noble, A. J., & Sinclair, D. (2010). The Construction and Anticipated Science of SNOLAB. Annual Review of Nuclear and Particle Science, 60(1), 163-180. doi:10.1146/annurev.nucl.012809.104513 es_ES
dc.description.references Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Conner, A. (2012). First dark matter search results from a 4-kgCF3Ibubble chamber operated in a deep underground site. Physical Review D, 86(5). doi:10.1103/physrevd.86.052001 es_ES
dc.description.references Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Conner, A. (2014). Erratum: First dark matter search results from a 4-kgCF3Ibubble chamber operated in a deep underground site [Phys. Rev. D86, 052001 (2012)]. Physical Review D, 90(7). doi:10.1103/physrevd.90.079902 es_ES
dc.description.references Aubin, F., Auger, M., Genest, M.-H., Giroux, G., Gornea, R., Faust, R., … Storey, C. (2008). Discrimination of nuclear recoils from alpha particles with superheated liquids. New Journal of Physics, 10(10), 103017. doi:10.1088/1367-2630/10/10/103017 es_ES
dc.description.references Zacek, V. (1994). Search for dark matter with moderately superheated liquids. Il Nuovo Cimento A, 107(2), 291-298. doi:10.1007/bf02781560 es_ES
dc.description.references Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2016). Dark matter search results from the PICO-60CF3Ibubble chamber. Physical Review D, 93(5). doi:10.1103/physrevd.93.052014 es_ES
dc.description.references Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Campion, P. (2017). Dark Matter Search Results from the PICO−60 C3F8 Bubble Chamber. Physical Review Letters, 118(25). doi:10.1103/physrevlett.118.251301 es_ES
dc.description.references Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Brice, S. J. (2016). Improved dark matter search results from PICO-2L Run 2. Physical Review D, 93(6). doi:10.1103/physrevd.93.061101 es_ES
dc.description.references Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2015). Dark Matter Search Results from the PICO-2LC3F8Bubble Chamber. Physical Review Letters, 114(23). doi:10.1103/physrevlett.114.231302 es_ES
dc.description.references Hasert, F. J., Faissner, H., Krenz, W., Von Krogh, J., Lanske, D., Morfin, J., … Lemonne, J. (1973). Search for elastic muon-neutrino electron scattering. Physics Letters B, 46(1), 121-124. doi:10.1016/0370-2693(73)90494-2 es_ES
dc.description.references Hasert, F. J., Kabe, S., Krenz, W., Von Krogh, J., Lanske, D., Morfin, J., … Sacton, J. (1973). Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment. Physics Letters B, 46(1), 138-140. doi:10.1016/0370-2693(73)90499-1 es_ES
dc.description.references Behnke, E., Benjamin, T., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Cooper, P. S. (2013). Direct measurement of the bubble-nucleation energy threshold in aCF3Ibubble chamber. Physical Review D, 88(2). doi:10.1103/physrevd.88.021101 es_ES
dc.description.references Tenner, A. G. (1963). Nucleation in bubble chambers. Nuclear Instruments and Methods, 22, 1-42. doi:10.1016/0029-554x(63)90224-6 es_ES
dc.description.references Kozynets, T., Fallows, S., & Krauss, C. B. (2019). Modeling emission of acoustic energy during bubble expansion in PICO bubble chambers. Physical Review D, 100(5). doi:10.1103/physrevd.100.052001 es_ES
dc.description.references Seitz, F. (1958). On the Theory of the Bubble Chamber. Physics of Fluids, 1(1), 2. doi:10.1063/1.1724333 es_ES
dc.description.references Behnke, E., Collar, J. I., Cooper, P. S., Crum, K., Crisler, M., Hu, M., … Tschirhart, R. (2008). Spin-Dependent WIMP Limits from a Bubble Chamber. Science, 319(5865), 933-936. doi:10.1126/science.1149999 es_ES
dc.description.references Barnabé-Heider, M., Di Marco, M., Doane, P., Genest, M.-H., Gornea, R., Guénette, R., … Noulty, R. (2005). Response of superheated droplet detectors of the PICASSO dark matter search experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1-2), 184-204. doi:10.1016/j.nima.2005.09.015 es_ES
dc.description.references Ziegler, J. F., Ziegler, M. D., & Biersack, J. P. (2010). SRIM – The stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(11-12), 1818-1823. doi:10.1016/j.nimb.2010.02.091 es_ES
dc.description.references Bressler, M., Campion, P., Cushman, V. S., Morrese, A., Wagner, J. M., Zerbo, S., … Dahl, C. E. (2019). A buffer-free concept bubble chamber for PICO dark matter searches. Journal of Instrumentation, 14(08), P08019-P08019. doi:10.1088/1748-0221/14/08/p08019 es_ES
dc.description.references Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8 es_ES
dc.description.references Pozzi, S. A., Padovani, E., & Marseguerra, M. (2003). MCNP-PoliMi: a Monte-Carlo code for correlation measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 513(3), 550-558. doi:10.1016/j.nima.2003.06.012 es_ES
dc.description.references Archambault, S., Aubin, F., Auger, M., Beleshi, M., Behnke, E., … Behnke, J. (2011). New insights into particle detection with superheated liquids. New Journal of Physics, 13(4), 043006. doi:10.1088/1367-2630/13/4/043006 es_ES
dc.description.references Glaser, D. A. (1954). Progress report on the development of bubble chambers. Il Nuovo Cimento, 11(S2), 361-368. doi:10.1007/bf02781098 es_ES
dc.description.references Fabian, B. N., Place, R. L., Riley, W. A., Sims, W. H., & Kenney, V. P. (1963). Density of Particle Tracks in the Hydrogen Bubble Chamber. Review of Scientific Instruments, 34(5), 484-495. doi:10.1063/1.1718415 es_ES
dc.description.references Willis, W. J., Fowler, E. C., & Rahm, D. C. (1957). Bubble Density in a Propane Bubble Chamber. Physical Review, 108(4), 1046-1047. doi:10.1103/physrev.108.1046 es_ES
dc.description.references Hahn, B., & Hugentobler, E. (1960). Relativistic increase in bubble density in a CBrF3 bubble chamber. Il Nuovo Cimento, 17(6), 983-985. doi:10.1007/bf02732145 es_ES
dc.description.references Brown, J. L., Glaser, D. A., & Perl, M. L. (1956). Liquid Xenon Bubble Chamber. Physical Review, 102(2), 586-587. doi:10.1103/physrev.102.586 es_ES
dc.description.references Baxter, D., Chen, C. J., Crisler, M., Cwiok, T., Dahl, C. E., Grimsted, A., … Zhang, J. (2017). First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering. Physical Review Letters, 118(23). doi:10.1103/physrevlett.118.231301 es_ES
dc.description.references Durup, J., & Platzman, R. L. (1961). Role of the Auger effect in the displacement of atoms in solids by ionizing radiation. Discussions of the Faraday Society, 31, 156. doi:10.1039/df9613100156 es_ES
dc.description.references Schönfeld, E., & Janßen, H. (2000). Calculation of emission probabilities of X-rays and Auger electrons emitted in radioactive disintegration processes. Applied Radiation and Isotopes, 52(3), 595-600. doi:10.1016/s0969-8043(99)00216-x es_ES
dc.description.references Strigari, L. E. (2009). Neutrino coherent scattering rates at direct dark matter detectors. New Journal of Physics, 11(10), 105011. doi:10.1088/1367-2630/11/10/105011 es_ES
dc.description.references Lewin, J. D., & Smith, P. F. (1996). Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astroparticle Physics, 6(1), 87-112. doi:10.1016/s0927-6505(96)00047-3 es_ES
dc.description.references Fitzpatrick, A. L., Haxton, W., Katz, E., Lubbers, N., & Xu, Y. (2013). The effective field theory of dark matter direct detection. Journal of Cosmology and Astroparticle Physics, 2013(02), 004-004. doi:10.1088/1475-7516/2013/02/004 es_ES
dc.description.references Anand, N., Fitzpatrick, A. L., & Haxton, W. C. (2014). Weakly interacting massive particle-nucleus elastic scattering response. Physical Review C, 89(6). doi:10.1103/physrevc.89.065501 es_ES
dc.description.references Gresham, M. I., & Zurek, K. M. (2014). Effect of nuclear response functions in dark matter direct detection. Physical Review D, 89(12). doi:10.1103/physrevd.89.123521 es_ES
dc.description.references Gluscevic, V., Gresham, M. I., McDermott, S. D., Peter, A. H. G., & Zurek, K. M. (2015). Identifying the theory of dark matter with direct detection. Journal of Cosmology and Astroparticle Physics, 2015(12), 057-057. doi:10.1088/1475-7516/2015/12/057 es_ES
dc.description.references Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., … Baudis, L. (2019). Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T. Physical Review Letters, 122(14). doi:10.1103/physrevlett.122.141301 es_ES
dc.description.references Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., … Biesiadzinski, T. P. (2017). Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure. Physical Review Letters, 118(25). doi:10.1103/physrevlett.118.251302 es_ES
dc.description.references Fu, C., Cui, X., Zhou, X., Chen, X., Chen, Y., … Fang, D. (2017). Spin-Dependent Weakly-Interacting-Massive-Particle–Nucleon Cross Section Limits from First Data of PandaX-II Experiment. Physical Review Letters, 118(7). doi:10.1103/physrevlett.118.071301 es_ES
dc.description.references Behnke, E., Besnier, M., Bhattacharjee, P., Dai, X., Das, M., Davour, A., … Zacek, V. (2017). Final results of the PICASSO dark matter search experiment. Astroparticle Physics, 90, 85-92. doi:10.1016/j.astropartphys.2017.02.005 es_ES
dc.description.references Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). Search for annihilating dark matter in the Sun with 3 years of IceCube data. The European Physical Journal C, 77(3). doi:10.1140/epjc/s10052-017-4689-9 es_ES
dc.description.references Choi, K., Abe, K., Haga, Y., Hayato, Y., Iyogi, K., Kameda, J., … Nakahata, M. (2015). Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande. Physical Review Letters, 114(14). doi:10.1103/physrevlett.114.141301 es_ES
dc.description.references Ruppin, F., Billard, J., Figueroa-Feliciano, E., & Strigari, L. (2014). Complementarity of dark matter detectors in light of the neutrino background. Physical Review D, 90(8). doi:10.1103/physrevd.90.083510 es_ES
dc.description.references Felizardo, M., Girard, T. A., Morlat, T., Fernandes, A. C., Ramos, A. R., Marques, J. G., … Marques, R. (2014). The SIMPLE Phase II dark matter search. Physical Review D, 89(7). doi:10.1103/physrevd.89.072013 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Physics Letters B, 759, 69-74. doi:10.1016/j.physletb.2016.05.019 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2016(05), 016-016. doi:10.1088/1475-7516/2016/05/016 es_ES
dc.description.references Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., … Bauermeister, B. (2018). Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Physical Review Letters, 121(11). doi:10.1103/physrevlett.121.111302 es_ES
dc.description.references Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., … Biesiadzinski, T. P. (2017). Results from a Search for Dark Matter in the Complete LUX Exposure. Physical Review Letters, 118(2). doi:10.1103/physrevlett.118.021303 es_ES
dc.description.references Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Araujo, G. R., Asner, D. M., … Batignani, G. (2018). Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Physical Review Letters, 121(8). doi:10.1103/physrevlett.121.081307 es_ES
dc.description.references Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Araujo, G. R., Ave, M., … Biery, K. (2018). DarkSide-50 532-day dark matter search with low-radioactivity argon. Physical Review D, 98(10). doi:10.1103/physrevd.98.102006 es_ES
dc.description.references Agnese, R., Anderson, A. J., Aralis, T., Aramaki, T., Arnquist, I. J., Baker, W., … Bauer, D. A. (2018). Low-mass dark matter search with CDMSlite. Physical Review D, 97(2). doi:10.1103/physrevd.97.022002 es_ES
dc.description.references Agnese, R., Aramaki, T., Arnquist, I. J., Baker, W., Balakishiyeva, D., Banik, S., … Binder, T. (2018). Results from the Super Cryogenic Dark Matter Search Experiment at Soudan. Physical Review Letters, 120(6). doi:10.1103/physrevlett.120.061802 es_ES
dc.description.references Hehn, L., Armengaud, E., Arnaud, Q., Augier, C., Benoît, A., Bergé, L., … Yakushev, E. (2016). Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach. The European Physical Journal C, 76(10). doi:10.1140/epjc/s10052-016-4388-y es_ES
dc.description.references Tolman, R. C. (1949). The Effect of Droplet Size on Surface Tension. The Journal of Chemical Physics, 17(3), 333-337. doi:10.1063/1.1747247 es_ES
dc.description.references Kirkwood, J. G., & Buff, F. P. (1949). The Statistical Mechanical Theory of Surface Tension. The Journal of Chemical Physics, 17(3), 338-343. doi:10.1063/1.1747248 es_ES
dc.description.references Xue, Y.-Q., Yang, X.-C., Cui, Z.-X., & Lai, W.-P. (2010). The Effect of Microdroplet Size on the Surface Tension and Tolman Length. The Journal of Physical Chemistry B, 115(1), 109-112. doi:10.1021/jp1084313 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem