- -

Noise estimation for hyperspectral subspace identification on FPGAs

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Noise estimation for hyperspectral subspace identification on FPGAs

Show full item record

León, G.; González, C.; Mayo Gual, R.; Mozos, D.; Quintana-Ortí, ES. (2019). Noise estimation for hyperspectral subspace identification on FPGAs. The Journal of Supercomputing. 75(3):1323-1335. https://doi.org/10.1007/s11227-018-2425-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160431

Files in this item

Item Metadata

Title: Noise estimation for hyperspectral subspace identification on FPGAs
Author: León, Germán González, Carlos Mayo Gual, Rafael Mozos, Daniel Quintana-Ortí, Enrique S.
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Issued date:
Abstract:
[EN] We present a reliable and efficient FPGA implementation of a procedure for the computation of the noise estimation matrix, a key stage for subspace identification of hyperspectral images. Our hardware realization is ...[+]
Subjects: Hyperspectral images , Subspace identification , Noise estimation , Least squares problems , FPGAs , High performance , Energy consumption
Copyrigths: Reserva de todos los derechos
Source:
The Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-018-2425-3
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11227-018-2425-3
Project ID:
info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/
info:eu-repo/grantAgreement/MINECO//TIN2013-40968-P/ES/TECNICAS HARDWARE Y SOFTWARE PARA EL ANALISIS, DETECCION Y RECUPERACION DE ERRORES INDUCIDOS POR LA RADIACION EN SISTEMAS DIGITALES EMBARCADOS EN MISIONES ESPACIALES./
Thanks:
This work was supported by MINECO Projects TIN2014-53495-R and TIN2013-40968-P.
Type: Artículo

References

Anderson E et al (1999) E LAPACK users’ guide, 3rd edn. SIAM, Philadelphia

Benner P, Novaković V, Plaza A, Quintana-Ortí ES, Remón A (2015) Fast and reliable noise estimation for Hyperspectral subspace identification. IEEE Geosci Remote Sens Lett 12(6):1199–1203

Bioucas-Dias J, Nascimento J (2008) Hyperspectral subspace identification. IEEE Trans Geosci Remote Sens 46:2435–2445 [+]
Anderson E et al (1999) E LAPACK users’ guide, 3rd edn. SIAM, Philadelphia

Benner P, Novaković V, Plaza A, Quintana-Ortí ES, Remón A (2015) Fast and reliable noise estimation for Hyperspectral subspace identification. IEEE Geosci Remote Sens Lett 12(6):1199–1203

Bioucas-Dias J, Nascimento J (2008) Hyperspectral subspace identification. IEEE Trans Geosci Remote Sens 46:2435–2445

Bioucas-Dias J, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE JSTARS 5(2):354–379

Björck A (1996) Numerical methods for least squares problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

Gunnels JA, Gustavson FG, Henry GM, van de Geijn RA (2001) FLAME: formal linear algebra methods environment. ACM Trans Math Softw 27(4):422–455. https://doi.org/10.1145/504210.504213

Kerekes J, Baum J (2002) Spectral imaging system analytical model for subpixel object detection. IEEE Trans Geosci Remote Sens 40(5):1088–1101

León G, González C, Mayo R, Quintana-Ortí ES, Mozos D (2017) Energy-efficient QR factorization on FPGAs. In: Proceedings of 17th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2017), Cádiz, Spain

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record