- -

Noise estimation for hyperspectral subspace identification on FPGAs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Noise estimation for hyperspectral subspace identification on FPGAs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author León, Germán es_ES
dc.contributor.author González, Carlos es_ES
dc.contributor.author Mayo Gual, Rafael es_ES
dc.contributor.author Mozos, Daniel es_ES
dc.contributor.author Quintana-Ortí, Enrique S. es_ES
dc.date.accessioned 2021-02-02T04:32:48Z
dc.date.available 2021-02-02T04:32:48Z
dc.date.issued 2019-03 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160431
dc.description.abstract [EN] We present a reliable and efficient FPGA implementation of a procedure for the computation of the noise estimation matrix, a key stage for subspace identification of hyperspectral images. Our hardware realization is based on numerically stable orthogonal transformations, avoids the numerical difficulties of the normal equations method for the solution of linear least squares problems (LLS), and exploits the special relations between coupled LLS problems arising in the hyperspectral image. Our modular implementation decomposes the QR factorization that comprises a significant part of the cost into a sequence of suboperations, which can be efficiently computed on an FPGA. es_ES
dc.description.sponsorship This work was supported by MINECO Projects TIN2014-53495-R and TIN2013-40968-P. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hyperspectral images es_ES
dc.subject Subspace identification es_ES
dc.subject Noise estimation es_ES
dc.subject Least squares problems es_ES
dc.subject FPGAs es_ES
dc.subject High performance es_ES
dc.subject Energy consumption es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Noise estimation for hyperspectral subspace identification on FPGAs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-018-2425-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-40968-P/ES/TECNICAS HARDWARE Y SOFTWARE PARA EL ANALISIS, DETECCION Y RECUPERACION DE ERRORES INDUCIDOS POR LA RADIACION EN SISTEMAS DIGITALES EMBARCADOS EN MISIONES ESPACIALES./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation León, G.; González, C.; Mayo Gual, R.; Mozos, D.; Quintana-Ortí, ES. (2019). Noise estimation for hyperspectral subspace identification on FPGAs. The Journal of Supercomputing. 75(3):1323-1335. https://doi.org/10.1007/s11227-018-2425-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-018-2425-3 es_ES
dc.description.upvformatpinicio 1323 es_ES
dc.description.upvformatpfin 1335 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 75 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\387464 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Anderson E et al (1999) E LAPACK users’ guide, 3rd edn. SIAM, Philadelphia es_ES
dc.description.references Benner P, Novaković V, Plaza A, Quintana-Ortí ES, Remón A (2015) Fast and reliable noise estimation for Hyperspectral subspace identification. IEEE Geosci Remote Sens Lett 12(6):1199–1203 es_ES
dc.description.references Bioucas-Dias J, Nascimento J (2008) Hyperspectral subspace identification. IEEE Trans Geosci Remote Sens 46:2435–2445 es_ES
dc.description.references Bioucas-Dias J, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE JSTARS 5(2):354–379 es_ES
dc.description.references Björck A (1996) Numerical methods for least squares problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia es_ES
dc.description.references Gunnels JA, Gustavson FG, Henry GM, van de Geijn RA (2001) FLAME: formal linear algebra methods environment. ACM Trans Math Softw 27(4):422–455. https://doi.org/10.1145/504210.504213 es_ES
dc.description.references Kerekes J, Baum J (2002) Spectral imaging system analytical model for subpixel object detection. IEEE Trans Geosci Remote Sens 40(5):1088–1101 es_ES
dc.description.references León G, González C, Mayo R, Quintana-Ortí ES, Mozos D (2017) Energy-efficient QR factorization on FPGAs. In: Proceedings of 17th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2017), Cádiz, Spain es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem