Mostrar el registro sencillo del ítem
dc.contributor.author | León, Germán | es_ES |
dc.contributor.author | González, Carlos | es_ES |
dc.contributor.author | Mayo Gual, Rafael | es_ES |
dc.contributor.author | Mozos, Daniel | es_ES |
dc.contributor.author | Quintana-Ortí, Enrique S. | es_ES |
dc.date.accessioned | 2021-02-02T04:32:48Z | |
dc.date.available | 2021-02-02T04:32:48Z | |
dc.date.issued | 2019-03 | es_ES |
dc.identifier.issn | 0920-8542 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160431 | |
dc.description.abstract | [EN] We present a reliable and efficient FPGA implementation of a procedure for the computation of the noise estimation matrix, a key stage for subspace identification of hyperspectral images. Our hardware realization is based on numerically stable orthogonal transformations, avoids the numerical difficulties of the normal equations method for the solution of linear least squares problems (LLS), and exploits the special relations between coupled LLS problems arising in the hyperspectral image. Our modular implementation decomposes the QR factorization that comprises a significant part of the cost into a sequence of suboperations, which can be efficiently computed on an FPGA. | es_ES |
dc.description.sponsorship | This work was supported by MINECO Projects TIN2014-53495-R and TIN2013-40968-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | The Journal of Supercomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hyperspectral images | es_ES |
dc.subject | Subspace identification | es_ES |
dc.subject | Noise estimation | es_ES |
dc.subject | Least squares problems | es_ES |
dc.subject | FPGAs | es_ES |
dc.subject | High performance | es_ES |
dc.subject | Energy consumption | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Noise estimation for hyperspectral subspace identification on FPGAs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11227-018-2425-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2013-40968-P/ES/TECNICAS HARDWARE Y SOFTWARE PARA EL ANALISIS, DETECCION Y RECUPERACION DE ERRORES INDUCIDOS POR LA RADIACION EN SISTEMAS DIGITALES EMBARCADOS EN MISIONES ESPACIALES./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | León, G.; González, C.; Mayo Gual, R.; Mozos, D.; Quintana-Ortí, ES. (2019). Noise estimation for hyperspectral subspace identification on FPGAs. The Journal of Supercomputing. 75(3):1323-1335. https://doi.org/10.1007/s11227-018-2425-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11227-018-2425-3 | es_ES |
dc.description.upvformatpinicio | 1323 | es_ES |
dc.description.upvformatpfin | 1335 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 75 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\387464 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Anderson E et al (1999) E LAPACK users’ guide, 3rd edn. SIAM, Philadelphia | es_ES |
dc.description.references | Benner P, Novaković V, Plaza A, Quintana-Ortí ES, Remón A (2015) Fast and reliable noise estimation for Hyperspectral subspace identification. IEEE Geosci Remote Sens Lett 12(6):1199–1203 | es_ES |
dc.description.references | Bioucas-Dias J, Nascimento J (2008) Hyperspectral subspace identification. IEEE Trans Geosci Remote Sens 46:2435–2445 | es_ES |
dc.description.references | Bioucas-Dias J, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE JSTARS 5(2):354–379 | es_ES |
dc.description.references | Björck A (1996) Numerical methods for least squares problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia | es_ES |
dc.description.references | Gunnels JA, Gustavson FG, Henry GM, van de Geijn RA (2001) FLAME: formal linear algebra methods environment. ACM Trans Math Softw 27(4):422–455. https://doi.org/10.1145/504210.504213 | es_ES |
dc.description.references | Kerekes J, Baum J (2002) Spectral imaging system analytical model for subpixel object detection. IEEE Trans Geosci Remote Sens 40(5):1088–1101 | es_ES |
dc.description.references | León G, González C, Mayo R, Quintana-Ortí ES, Mozos D (2017) Energy-efficient QR factorization on FPGAs. In: Proceedings of 17th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2017), Cádiz, Spain | es_ES |