- -

Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field

Mostrar el registro completo del ítem

Lenis, J.; Bejarano, G.; Rico Tortosa, PM.; Gómez Ribelles, JL.; Bolívar, F. (2019). Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field. Surface and Coatings Technology. 377:1-9. https://doi.org/10.1016/j.surfcoat.2019.06.097

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160436

Ficheros en el ítem

Metadatos del ítem

Título: Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field
Autor: Lenis, J.A. Bejarano, G. Rico Tortosa, Patricia María Gómez Ribelles, José Luís Bolívar, F.J.
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
[EN] The use of composite coatings is emerging as a great alternative to conventional coatings, allowing the combination of different superficial properties that are widely desired in surgical implants, such as osteointegration ...[+]
Palabras clave: Magnetron sputtering , Hydroxyapatite , Calcium/phosphate ratio , Microstructure , Multi-layer coating , Intermediate layers , Critical load , Cytotoxicity
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Surface and Coatings Technology. (issn: 0257-8972 )
DOI: 10.1016/j.surfcoat.2019.06.097
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.surfcoat.2019.06.097
Título del congreso: International Conference on Metallurgical Coatings and Thin Films (ICMCTF 2019)
Lugar del congreso: San Diego, CA, USA
Fecha congreso: Mayo 19-24,2019
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/
info:eu-repo/grantAgreement/COLCIENCIAS//15-1696/
Descripción: "NOTICE: this is the author's version of a work that was accepted for publication in Surface and Coatings Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Surface and Coatings Technology, VOL 377, (2019) DOI 10.1016/j.surfcoat.2019.06.097"
Agradecimientos:
We thank the University of Antioquia, the Centro de Investigation, Innovation y Desarrollo de materiales (CIDEMAT) group, the Departamento Administrativo de Ciencia, Tecnologia e Innovation (COLCIENCIAS) for financing the ...[+]
Tipo: Artículo Comunicación en congreso

References

Melero, H., Fernández, J., & Guilemany Casadamon, J. M. (2011). Recubrimientos bioactivos: Hidroxiapatita y titania. Biomecánica, 19(1). doi:10.5821/sibb.v19i1.1814

Ozeki, K., Yuhta, T., Fukui, Y., & Aoki, H. (2002). Phase composition of sputtered films from a hydroxyapatite target. Surface and Coatings Technology, 160(1), 54-61. doi:10.1016/s0257-8972(02)00363-8

Nelea, V., Morosanu, C., Iliescu, M., & Mihailescu, I. N. (2003). Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Surface and Coatings Technology, 173(2-3), 315-322. doi:10.1016/s0257-8972(03)00729-1 [+]
Melero, H., Fernández, J., & Guilemany Casadamon, J. M. (2011). Recubrimientos bioactivos: Hidroxiapatita y titania. Biomecánica, 19(1). doi:10.5821/sibb.v19i1.1814

Ozeki, K., Yuhta, T., Fukui, Y., & Aoki, H. (2002). Phase composition of sputtered films from a hydroxyapatite target. Surface and Coatings Technology, 160(1), 54-61. doi:10.1016/s0257-8972(02)00363-8

Nelea, V., Morosanu, C., Iliescu, M., & Mihailescu, I. N. (2003). Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Surface and Coatings Technology, 173(2-3), 315-322. doi:10.1016/s0257-8972(03)00729-1

Mohseni, E., Zalnezhad, E., Bushroa, A. R., Abdel Magid Hamouda, Goh, B. T., & Yoon, G. H. (2015). Ti/TiN/HA coating on Ti–6Al–4V for biomedical applications. Ceramics International, 41(10), 14447-14457. doi:10.1016/j.ceramint.2015.07.081

Nelea, V., Morosanu, C., Bercu, M., & Mihailescu, I. N. (2007). Interfacial titanium oxide between hydroxyapatite and TiAlFe substrate. Journal of Materials Science: Materials in Medicine, 18(12), 2347-2354. doi:10.1007/s10856-007-3135-1

M.S. Tkachev, E.S. Melnikov, M.A. Surmeneva, A.A. Sharonova, R.A. Surmenev, O.S. Korneva, I.A. Shulepov, K. Loza, M. Epple, Adhesion properties of a three-layer system based on RF-magnetron sputter deposited calcium-phosphate coating and silver nanoparticles, Proc. - 2016 11th Int. Forum Strateg. Technol. IFOST 2016. (2017) 88–90. doi:https://doi.org/10.1109/IFOST.2016.7884197.

E. Mohseni, E. Zalnezhad, a. R. Bushroa, Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper, Int. J. Adhes. Adhes. 48 (2014) 238–257. doi:https://doi.org/10.1016/j.ijadhadh.2013.09.030.

Sargeant, A., & Goswami, T. (2007). Hip implants – Paper VI – Ion concentrations. Materials & Design, 28(1), 155-171. doi:10.1016/j.matdes.2005.05.018

Qi, J., Yang, Y., Zhou, M., Chen, Z., & Chen, K. (2019). Effect of transition layer on the performance of hydroxyapatite/titanium nitride coating developed on Ti-6Al-4V alloy by magnetron sputtering. Ceramics International, 45(4), 4863-4869. doi:10.1016/j.ceramint.2018.11.183

Ghasemi, S., Shanaghi, A., & Chu, P. K. (2017). Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering. Thin Solid Films, 638, 96-104. doi:10.1016/j.tsf.2017.07.049

Thian, E. S., Huang, J., Barber, Z. H., Best, S. M., & Bonfield, W. (2011). Surface modification of magnetron-sputtered hydroxyapatite thin films via silicon substitution for orthopaedic and dental applications. Surface and Coatings Technology, 205(11), 3472-3477. doi:10.1016/j.surfcoat.2010.12.012

Vladescu, A., Birlik, I., Braic, V., Toparli, M., Celik, E., & Ak Azem, F. (2014). Enhancement of the mechanical properties of hydroxyapatite by SiC addition. Journal of the Mechanical Behavior of Biomedical Materials, 40, 362-368. doi:10.1016/j.jmbbm.2014.08.025

Azem, F. A., Kiss, A., Birlik, I., Braic, V., Luculescu, C., & Vladescu, A. (2014). The corrosion and bioactivity behavior of SiC doped hydroxyapatite for dental applications. Ceramics International, 40(10), 15881-15887. doi:10.1016/j.ceramint.2014.07.116

Ciobanu, C. S., Iconaru, S. L., Le Coustumer, P., Constantin, L. V., & Predoi, D. (2012). Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria. Nanoscale Research Letters, 7(1). doi:10.1186/1556-276x-7-324

Peetsch, A., Greulich, C., Braun, D., Stroetges, C., Rehage, H., Siebers, B., … Epple, M. (2013). Silver-doped calcium phosphate nanoparticles: Synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids and Surfaces B: Biointerfaces, 102, 724-729. doi:10.1016/j.colsurfb.2012.09.040

A. Quirama, A.M. Echavarría, J.M. Meza, J. Osorio, G. Bejarano G, Improvement of the mechanical behavior of the calcium phosphate coatings deposited onto Ti6Al4V alloy using an intermediate TiN/TiO2 bilayer, Vacuum. 146 (2017) 22–30. doi:https://doi.org/10.1016/j.vacuum.2017.09.024.

Lenis, J. A., Hurtado, F. M., Gómez, M. A., & Bolívar, F. J. (2019). Effect of thermal treatment on structure, phase and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Thin Solid Films, 669, 571-578. doi:10.1016/j.tsf.2018.11.045

Sofronia, A. M., Baies, R., Anghel, E. M., Marinescu, C. A., & Tanasescu, S. (2014). Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Materials Science and Engineering: C, 43, 153-163. doi:10.1016/j.msec.2014.07.023

Shiri, S., Ashtijoo, P., Odeshi, A., & Yang, Q. (2016). Evaluation of Stoney equation for determining the internal stress of DLC thin films using an optical profiler. Surface and Coatings Technology, 308, 98-100. doi:10.1016/j.surfcoat.2016.07.098

Barry, J. N., Cowley, A., McNally, P. J., & Dowling, D. P. (2013). Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique. Journal of Biomedical Materials Research Part A, 102(3), 871-879. doi:10.1002/jbm.a.34755

Constable, C. P., Yarwood, J., & Münz, W.-D. (1999). Raman microscopic studies of PVD hard coatings. Surface and Coatings Technology, 116-119, 155-159. doi:10.1016/s0257-8972(99)00072-9

Cuscó, R., Guitián, F., Aza, S. d., & Artús, L. (1998). Differentiation between hydroxyapatite and β-tricalcium phosphate by means of μ-Raman spectroscopy. Journal of the European Ceramic Society, 18(9), 1301-1305. doi:10.1016/s0955-2219(98)00057-0

Ivanova, A. A., Surmeneva, M. A., Grubova, I. Y., Sharonova, A. A., Pichugin, V. F., Chaikina, M. V., … Surmenev, R. A. (2013). Influence of the substrate bias on the stoichiometry and structure of RF-magnetron sputter-deposited silver-containing calcium phosphate coatings. Materialwissenschaft und Werkstofftechnik, 44(2-3), 218-225. doi:10.1002/mawe.201300101

Yonggang, Y., Wolke, J. G. C., Yubao, L., & Jansen, J. A. (2007). The influence of discharge power and heat treatment on calcium phosphate coatings prepared by RF magnetron sputtering deposition. Journal of Materials Science: Materials in Medicine, 18(6), 1061-1069. doi:10.1007/s10856-007-0119-0

Xin, R., Leng, Y., Chen, J., & Zhang, Q. (2005). A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials, 26(33), 6477-6486. doi:10.1016/j.biomaterials.2005.04.028

Surmeneva, M. A., Tyurin, A. I., Mukhametkaliyev, T. M., Pirozhkova, T. S., Shuvarin, I. A., Syrtanov, M. S., & Surmenev, R. A. (2015). Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering. Journal of the Mechanical Behavior of Biomedical Materials, 46, 127-136. doi:10.1016/j.jmbbm.2015.02.025

M.A. Surmeneva, M. V. Chaikina, V.I. Zaikovskiy, V.F. Pichugin, V. Buck, O. Prymak, M. Epple, R. a. Surmenev, The structure of an rf-magnetron sputter-deposited silicate-containinghydroxyapatite-based coating investigated by high-resolution techniques, Surf. Coatings Technol. 218 (2013) 39–46. doi:https://doi.org/10.1016/j.surfcoat.2012.12.023.

A. Ivanova, M.A. Surmeneva, A.I. Tyurin, T.S. Pirozhkova, I.A. Shuvarin, O. Prymak, M. Epple, M. V Chaikina, R.A. Surmenev, Applied Surface Science Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films, 360 (2016) 929–935.

Ding, S.-J., Ju, C.-P., & Lin, J.-H. C. (1999). Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate. Journal of Biomedical Materials Research, 44(3), 266-279. doi:10.1002/(sici)1097-4636(19990305)44:3<266::aid-jbm5>3.0.co;2-4

A.R.A. Sagari, Ca-P-O thin film preparation, modification and characterisation, Ph.D thesis, University of Jyväskylä, 2011. https://jyx.jyu.fi/bitstream/handle/123456789/37195/Arcot_Rajashekar-Ananda-2011.pdf?sequence=1.

Paital, S. R., & Dahotre, N. B. (2009). Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering: R: Reports, 66(1-3), 1-70. doi:10.1016/j.mser.2009.05.001

Deligianni, D. (2001). Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials, 22(11), 1241-1251. doi:10.1016/s0142-9612(00)00274-x

Echavarría, A. M., Rico, P., Gómez Ribelles, J. L., Pacha-Olivenza, M. A., Fernández-Calderón, M.-C., & Bejarano-G, G. (2017). Development of a Ta/TaN/TaNx(Ag)y/TaN nanocomposite coating system and bio-response study for biomedical applications. Vacuum, 145, 55-67. doi:10.1016/j.vacuum.2017.08.020

García, C. G., Ferrus, L. L., Moratal, D., Pradas, M. M., & Sánchez, M. S. (2009). Poly(L-lactide) Substrates with Tailored Surface Chemistry by Plasma Copolymerisation of Acrylic Monomers. Plasma Processes and Polymers, 6(3), 190-198. doi:10.1002/ppap.200800112

Perdok, W. G., Christoffersen, J., & Arends, J. (1987). The thermal lattice expansion of calcium hydroxyapatite. Journal of Crystal Growth, 80(1), 149-154. doi:10.1016/0022-0248(87)90534-3

Evans, A. G., Crumley, G. B., & Demaray, R. E. (1983). On the mechanical behavior of brittle coatings and layers. Oxidation of Metals, 20(5-6), 193-216. doi:10.1007/bf00656841

ASTM C1624-05, Standard Test Method for Adhesion Strength and Mechanical Failure Modes of, Astm. 05 (2015) 1–29. doi:https://doi.org/10.1520/C1624-05R15.Scope.

Yang, Y. ., & Chang, E. (2001). Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti–6Al–4V substrate. Biomaterials, 22(13), 1827-1836. doi:10.1016/s0142-9612(00)00364-1

Lenis, J. A., Toro, L. J., & Bolívar, F. J. (2019). Multi-layer bactericidal silver - calcium phosphate coatings obtained by RF magnetron sputtering. Surface and Coatings Technology, 367, 203-211. doi:10.1016/j.surfcoat.2019.03.038

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem