- -

Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lenis, J.A. es_ES
dc.contributor.author Bejarano, G. es_ES
dc.contributor.author Rico Tortosa, Patricia María es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Bolívar, F.J. es_ES
dc.date.accessioned 2021-02-02T04:33:00Z
dc.date.available 2021-02-02T04:33:00Z
dc.date.issued 2019-11-15 es_ES
dc.identifier.issn 0257-8972 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160436
dc.description "NOTICE: this is the author's version of a work that was accepted for publication in Surface and Coatings Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Surface and Coatings Technology, VOL 377, (2019) DOI 10.1016/j.surfcoat.2019.06.097" es_ES
dc.description.abstract [EN] The use of composite coatings is emerging as a great alternative to conventional coatings, allowing the combination of different superficial properties that are widely desired in surgical implants, such as osteointegration and bactericidal character, and cannot be provided by one material alone. In the present investigation the effect of the incorporation of a TiN-Ti intermediate bilayer on the chemical composition, structure, morphology, roughness, residual stresses and adhesion of a multi-layer Hydroxyapatite (HA)-Ag coating deposited on Ti-6Al-4V by magnetron sputtering was evaluated. Additionally, the cytotoxicity of the developed system was evaluated by in vitro tests. According to the results obtained, a decrease in the Ca/P ratio from 1.85 to 1.74 was obtained through the deposition of an HA-Ag system on the intermediate bilayer, and the crystallinity of the developed coating was favored. The multi-layer structure was effectively observed by field emission scanning electron microscopy, where it was possible to identify each of the HA, Ag, TiN and Ti layers. Meanwhile, an increase of 7% in crystallite size, a decrease of 36% in residual stresses and an increase of 32% in adhesion were registered for this composite coating compared to the free intermediate bilayer system. Finally, biological evaluation allowed the non-cytotoxic character of the deposited coatings to be confirmed. es_ES
dc.description.sponsorship We thank the University of Antioquia, the Centro de Investigation, Innovation y Desarrollo de materiales (CIDEMAT) group, the Departamento Administrativo de Ciencia, Tecnologia e Innovation (COLCIENCIAS) for financing the Project 15-1696, the scholarship program of Enlazamundos, PR and JLGR acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-1-R (AEI/FEDER, UE) (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Institute de Salud Carlos III with assistance from the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Surface and Coatings Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Magnetron sputtering es_ES
dc.subject Hydroxyapatite es_ES
dc.subject Calcium/phosphate ratio es_ES
dc.subject Microstructure es_ES
dc.subject Multi-layer coating es_ES
dc.subject Intermediate layers es_ES
dc.subject Critical load es_ES
dc.subject Cytotoxicity es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1016/j.surfcoat.2019.06.097 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//15-1696/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Lenis, J.; Bejarano, G.; Rico Tortosa, PM.; Gómez Ribelles, JL.; Bolívar, F. (2019). Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field. Surface and Coatings Technology. 377:1-9. https://doi.org/10.1016/j.surfcoat.2019.06.097 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename International Conference on Metallurgical Coatings and Thin Films (ICMCTF 2019) es_ES
dc.relation.conferencedate Mayo 19-24,2019 es_ES
dc.relation.conferenceplace San Diego, CA, USA es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.surfcoat.2019.06.097 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 377 es_ES
dc.relation.pasarela S\405041 es_ES
dc.contributor.funder Universidad de Antioquia es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Melero, H., Fernández, J., & Guilemany Casadamon, J. M. (2011). Recubrimientos bioactivos: Hidroxiapatita y titania. Biomecánica, 19(1). doi:10.5821/sibb.v19i1.1814 es_ES
dc.description.references Ozeki, K., Yuhta, T., Fukui, Y., & Aoki, H. (2002). Phase composition of sputtered films from a hydroxyapatite target. Surface and Coatings Technology, 160(1), 54-61. doi:10.1016/s0257-8972(02)00363-8 es_ES
dc.description.references Nelea, V., Morosanu, C., Iliescu, M., & Mihailescu, I. N. (2003). Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Surface and Coatings Technology, 173(2-3), 315-322. doi:10.1016/s0257-8972(03)00729-1 es_ES
dc.description.references Mohseni, E., Zalnezhad, E., Bushroa, A. R., Abdel Magid Hamouda, Goh, B. T., & Yoon, G. H. (2015). Ti/TiN/HA coating on Ti–6Al–4V for biomedical applications. Ceramics International, 41(10), 14447-14457. doi:10.1016/j.ceramint.2015.07.081 es_ES
dc.description.references Nelea, V., Morosanu, C., Bercu, M., & Mihailescu, I. N. (2007). Interfacial titanium oxide between hydroxyapatite and TiAlFe substrate. Journal of Materials Science: Materials in Medicine, 18(12), 2347-2354. doi:10.1007/s10856-007-3135-1 es_ES
dc.description.references M.S. Tkachev, E.S. Melnikov, M.A. Surmeneva, A.A. Sharonova, R.A. Surmenev, O.S. Korneva, I.A. Shulepov, K. Loza, M. Epple, Adhesion properties of a three-layer system based on RF-magnetron sputter deposited calcium-phosphate coating and silver nanoparticles, Proc. - 2016 11th Int. Forum Strateg. Technol. IFOST 2016. (2017) 88–90. doi:https://doi.org/10.1109/IFOST.2016.7884197. es_ES
dc.description.references E. Mohseni, E. Zalnezhad, a. R. Bushroa, Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper, Int. J. Adhes. Adhes. 48 (2014) 238–257. doi:https://doi.org/10.1016/j.ijadhadh.2013.09.030. es_ES
dc.description.references Sargeant, A., & Goswami, T. (2007). Hip implants – Paper VI – Ion concentrations. Materials & Design, 28(1), 155-171. doi:10.1016/j.matdes.2005.05.018 es_ES
dc.description.references Qi, J., Yang, Y., Zhou, M., Chen, Z., & Chen, K. (2019). Effect of transition layer on the performance of hydroxyapatite/titanium nitride coating developed on Ti-6Al-4V alloy by magnetron sputtering. Ceramics International, 45(4), 4863-4869. doi:10.1016/j.ceramint.2018.11.183 es_ES
dc.description.references Ghasemi, S., Shanaghi, A., & Chu, P. K. (2017). Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering. Thin Solid Films, 638, 96-104. doi:10.1016/j.tsf.2017.07.049 es_ES
dc.description.references Thian, E. S., Huang, J., Barber, Z. H., Best, S. M., & Bonfield, W. (2011). Surface modification of magnetron-sputtered hydroxyapatite thin films via silicon substitution for orthopaedic and dental applications. Surface and Coatings Technology, 205(11), 3472-3477. doi:10.1016/j.surfcoat.2010.12.012 es_ES
dc.description.references Vladescu, A., Birlik, I., Braic, V., Toparli, M., Celik, E., & Ak Azem, F. (2014). Enhancement of the mechanical properties of hydroxyapatite by SiC addition. Journal of the Mechanical Behavior of Biomedical Materials, 40, 362-368. doi:10.1016/j.jmbbm.2014.08.025 es_ES
dc.description.references Azem, F. A., Kiss, A., Birlik, I., Braic, V., Luculescu, C., & Vladescu, A. (2014). The corrosion and bioactivity behavior of SiC doped hydroxyapatite for dental applications. Ceramics International, 40(10), 15881-15887. doi:10.1016/j.ceramint.2014.07.116 es_ES
dc.description.references Ciobanu, C. S., Iconaru, S. L., Le Coustumer, P., Constantin, L. V., & Predoi, D. (2012). Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria. Nanoscale Research Letters, 7(1). doi:10.1186/1556-276x-7-324 es_ES
dc.description.references Peetsch, A., Greulich, C., Braun, D., Stroetges, C., Rehage, H., Siebers, B., … Epple, M. (2013). Silver-doped calcium phosphate nanoparticles: Synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids and Surfaces B: Biointerfaces, 102, 724-729. doi:10.1016/j.colsurfb.2012.09.040 es_ES
dc.description.references A. Quirama, A.M. Echavarría, J.M. Meza, J. Osorio, G. Bejarano G, Improvement of the mechanical behavior of the calcium phosphate coatings deposited onto Ti6Al4V alloy using an intermediate TiN/TiO2 bilayer, Vacuum. 146 (2017) 22–30. doi:https://doi.org/10.1016/j.vacuum.2017.09.024. es_ES
dc.description.references Lenis, J. A., Hurtado, F. M., Gómez, M. A., & Bolívar, F. J. (2019). Effect of thermal treatment on structure, phase and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Thin Solid Films, 669, 571-578. doi:10.1016/j.tsf.2018.11.045 es_ES
dc.description.references Sofronia, A. M., Baies, R., Anghel, E. M., Marinescu, C. A., & Tanasescu, S. (2014). Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Materials Science and Engineering: C, 43, 153-163. doi:10.1016/j.msec.2014.07.023 es_ES
dc.description.references Shiri, S., Ashtijoo, P., Odeshi, A., & Yang, Q. (2016). Evaluation of Stoney equation for determining the internal stress of DLC thin films using an optical profiler. Surface and Coatings Technology, 308, 98-100. doi:10.1016/j.surfcoat.2016.07.098 es_ES
dc.description.references Barry, J. N., Cowley, A., McNally, P. J., & Dowling, D. P. (2013). Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique. Journal of Biomedical Materials Research Part A, 102(3), 871-879. doi:10.1002/jbm.a.34755 es_ES
dc.description.references Constable, C. P., Yarwood, J., & Münz, W.-D. (1999). Raman microscopic studies of PVD hard coatings. Surface and Coatings Technology, 116-119, 155-159. doi:10.1016/s0257-8972(99)00072-9 es_ES
dc.description.references Cuscó, R., Guitián, F., Aza, S. d., & Artús, L. (1998). Differentiation between hydroxyapatite and β-tricalcium phosphate by means of μ-Raman spectroscopy. Journal of the European Ceramic Society, 18(9), 1301-1305. doi:10.1016/s0955-2219(98)00057-0 es_ES
dc.description.references Ivanova, A. A., Surmeneva, M. A., Grubova, I. Y., Sharonova, A. A., Pichugin, V. F., Chaikina, M. V., … Surmenev, R. A. (2013). Influence of the substrate bias on the stoichiometry and structure of RF-magnetron sputter-deposited silver-containing calcium phosphate coatings. Materialwissenschaft und Werkstofftechnik, 44(2-3), 218-225. doi:10.1002/mawe.201300101 es_ES
dc.description.references Yonggang, Y., Wolke, J. G. C., Yubao, L., & Jansen, J. A. (2007). The influence of discharge power and heat treatment on calcium phosphate coatings prepared by RF magnetron sputtering deposition. Journal of Materials Science: Materials in Medicine, 18(6), 1061-1069. doi:10.1007/s10856-007-0119-0 es_ES
dc.description.references Xin, R., Leng, Y., Chen, J., & Zhang, Q. (2005). A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials, 26(33), 6477-6486. doi:10.1016/j.biomaterials.2005.04.028 es_ES
dc.description.references Surmeneva, M. A., Tyurin, A. I., Mukhametkaliyev, T. M., Pirozhkova, T. S., Shuvarin, I. A., Syrtanov, M. S., & Surmenev, R. A. (2015). Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering. Journal of the Mechanical Behavior of Biomedical Materials, 46, 127-136. doi:10.1016/j.jmbbm.2015.02.025 es_ES
dc.description.references M.A. Surmeneva, M. V. Chaikina, V.I. Zaikovskiy, V.F. Pichugin, V. Buck, O. Prymak, M. Epple, R. a. Surmenev, The structure of an rf-magnetron sputter-deposited silicate-containinghydroxyapatite-based coating investigated by high-resolution techniques, Surf. Coatings Technol. 218 (2013) 39–46. doi:https://doi.org/10.1016/j.surfcoat.2012.12.023. es_ES
dc.description.references A. Ivanova, M.A. Surmeneva, A.I. Tyurin, T.S. Pirozhkova, I.A. Shuvarin, O. Prymak, M. Epple, M. V Chaikina, R.A. Surmenev, Applied Surface Science Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films, 360 (2016) 929–935. es_ES
dc.description.references Ding, S.-J., Ju, C.-P., & Lin, J.-H. C. (1999). Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate. Journal of Biomedical Materials Research, 44(3), 266-279. doi:10.1002/(sici)1097-4636(19990305)44:3<266::aid-jbm5>3.0.co;2-4 es_ES
dc.description.references A.R.A. Sagari, Ca-P-O thin film preparation, modification and characterisation, Ph.D thesis, University of Jyväskylä, 2011. https://jyx.jyu.fi/bitstream/handle/123456789/37195/Arcot_Rajashekar-Ananda-2011.pdf?sequence=1. es_ES
dc.description.references Paital, S. R., & Dahotre, N. B. (2009). Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering: R: Reports, 66(1-3), 1-70. doi:10.1016/j.mser.2009.05.001 es_ES
dc.description.references Deligianni, D. (2001). Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials, 22(11), 1241-1251. doi:10.1016/s0142-9612(00)00274-x es_ES
dc.description.references Echavarría, A. M., Rico, P., Gómez Ribelles, J. L., Pacha-Olivenza, M. A., Fernández-Calderón, M.-C., & Bejarano-G, G. (2017). Development of a Ta/TaN/TaNx(Ag)y/TaN nanocomposite coating system and bio-response study for biomedical applications. Vacuum, 145, 55-67. doi:10.1016/j.vacuum.2017.08.020 es_ES
dc.description.references García, C. G., Ferrus, L. L., Moratal, D., Pradas, M. M., & Sánchez, M. S. (2009). Poly(L-lactide) Substrates with Tailored Surface Chemistry by Plasma Copolymerisation of Acrylic Monomers. Plasma Processes and Polymers, 6(3), 190-198. doi:10.1002/ppap.200800112 es_ES
dc.description.references Perdok, W. G., Christoffersen, J., & Arends, J. (1987). The thermal lattice expansion of calcium hydroxyapatite. Journal of Crystal Growth, 80(1), 149-154. doi:10.1016/0022-0248(87)90534-3 es_ES
dc.description.references Evans, A. G., Crumley, G. B., & Demaray, R. E. (1983). On the mechanical behavior of brittle coatings and layers. Oxidation of Metals, 20(5-6), 193-216. doi:10.1007/bf00656841 es_ES
dc.description.references ASTM C1624-05, Standard Test Method for Adhesion Strength and Mechanical Failure Modes of, Astm. 05 (2015) 1–29. doi:https://doi.org/10.1520/C1624-05R15.Scope. es_ES
dc.description.references Yang, Y. ., & Chang, E. (2001). Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti–6Al–4V substrate. Biomaterials, 22(13), 1827-1836. doi:10.1016/s0142-9612(00)00364-1 es_ES
dc.description.references Lenis, J. A., Toro, L. J., & Bolívar, F. J. (2019). Multi-layer bactericidal silver - calcium phosphate coatings obtained by RF magnetron sputtering. Surface and Coatings Technology, 367, 203-211. doi:10.1016/j.surfcoat.2019.03.038 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem