- -

Classifier combination approach for question classification for Bengali question answering system

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Classifier combination approach for question classification for Bengali question answering system

Mostrar el registro completo del ítem

Banerjee, S.; Kumar Naskar, S.; Rosso, P.; Bndyopadhyay, S. (2019). Classifier combination approach for question classification for Bengali question answering system. Sadhana. 44(12):1-14. https://doi.org/10.1007/s12046-019-1224-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160443

Ficheros en el ítem

Metadatos del ítem

Título: Classifier combination approach for question classification for Bengali question answering system
Autor: Banerjee, Somnath Kumar Naskar, Sudip Rosso, Paolo Bndyopadhyay, Sivaji
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Question classification (QC) is a prime constituent of an automated question answering system. The work presented here demonstrates that a combination of multiple models achieves better classification performance than ...[+]
Palabras clave: Bengali question classification , Question classification , Classifier combinations
Derechos de uso: Reserva de todos los derechos
Fuente:
Sadhana. (issn: 0256-2499 )
DOI: 10.1007/s12046-019-1224-8
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s12046-019-1224-8
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/
Agradecimientos:
Somnath Banerjee and Sudip Kumar Naskar are supported by Digital India Corporation (formerly Media Lab Asia), MeitY, Government of India, under the Visvesvaraya Ph.D. Scheme for Electronics and IT. The work of Paolo Rosso ...[+]
Tipo: Artículo

References

Jurafsky D and Martin J H 2014 Speech and language processing. Pearson, London

Martin J H and Jurafsky D 2000 Speech and language processing, international edition 710

Voorhees E M 2002 Overview of the TREC 2001 question answering track. NIST Special Publication, pp. 42–51 [+]
Jurafsky D and Martin J H 2014 Speech and language processing. Pearson, London

Martin J H and Jurafsky D 2000 Speech and language processing, international edition 710

Voorhees E M 2002 Overview of the TREC 2001 question answering track. NIST Special Publication, pp. 42–51

Hovy E, Gerber L, Hermjakob U, Lin C Y and Ravichandran D 2001 Toward semantics-based answer pinpointing. In: Proceedings of Human Language Technology Research, ACL, pp. 1–7

Ittycheriah A, Franz M, Zhu W J, Ratnaparkhi A and Mammone R J 2000 IBM’s statistical question answering system. In: Proceedings of TREC

Moldovan D, Paşca M, Harabagiu S and Surdeanu M 2003 Performance issues and error analysis in an open-domain question answering system. ACM Trans. Inf. Syst. 21(2): 133–154

Banerjee S and Bandyopadhyay S 2012 Bengali question classification: towards developing QA system. In: Proceedings of the 3rd Workshop on South and Sotheast Asian Language Processing (SANLP), COLING, pp. 25–40

Loni B 2011 A survey of state-of-the-art methods on question classification. Technical Report, Delft University of Technology

Hull D A 1999 Xerox TREC-8 question answering track report. In: Proceedings of TREC

Prager J, Radev D, Brown E, Coden A and Samn V 1999 The use of predictive annotation for question answering in TREC8. Inf. Retr. 1(3): 4

Moschitti A, Quarteroni S, Basili R and Manandhar S 2007 Exploiting syntactic and shallow semantic kernels for question answer classification. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, p. 776

Zhang D and Lee W S 2003 Question classification using support vector machines. In: Proceedings of Research and Development in Informaion Retrieval, ACM, pp. 26–32

Huang Z, Thint M and Qin Z 2008 Question classification using head words and their hypernyms. In: Proceedings of Empirical Methods in Natural Language Processing, ACL, pp. 927–936

Silva J, Coheur L, Mendes A C and Wichert A 2011 From symbolic to sub-symbolic information in question classification. Artif. Intell. Rev. 35(2): 137–154

Li X and Roth D 2006 Learning question classifiers: the role of semantic information. Nat. Lang. Eng. 12(03): 229–249

McCallum A, Freitag D and Pereira F C N 2000 Maximum entropy markov models for information extraction and segmentation. In: Proceedings of the International Conference on Machine Learning (ICML), vol. 17, pp. 591–598

Cortes C and Vapnik V 1995 Support-vector networks. Mach. Learn. 20(3): 273–297

Breiman L 1996 Bagging predictors. Mach. Learn. 24(2): 123–140

Clemen R T 1989 Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5(4): 559–583

Perrone M P 1993 Improving regression estimation: averaging methods for variance reduction with extensions to general convex measure optimization. Ph.D. Thesis, Brown University

Wolpert D H 1992 Stacked generalization. Neural Netw. 5(2): 241–259

Hansen L K and Salamon P 1990 Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12: 993–1001

Krogh A, Vedelsby J et al 1995 Neural network ensembles, cross validation, and active learning. Adv. Neural Inf. Process. Syst. 7: 231–238

Hashem S 1997 Optimal linear combinations of neural networks. Neural Netw. 10(4): 599–614

Opitz D W and Shavlik J W 1996 Actively searching for an effective neural network ensemble. Connect. Sci. 8(3–4): 337–354

Opitz D W and Shavlik J W 1996 Generating accurate and diverse members of a neural-network ensemble. In: Advances in neural information processing systems, pp. 535–541

Xin L, Huang X J and Wu L 2006 Question classification by ensemble learning. Int. J. Comput. Sci. Netw. Secur. 6(3): 147

Schapire R E 1990 The strength of weak learnability. Mach. Learn. 5(2): 197–227

Brill E 1995 Transformation-based error-driven learning and natural language processing: a case study in part-of-speech tagging. Comput. Linguist. 21(4): 543–565

Jia K, Chen K, Fan X and Zhang Y 2007 Chinese question classification based on ensemble learning. In: Proceedings of ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, SNPD 2007. IEEE, vol. 3, pp. 342–347

Su L, Liao H, Yu Z and Zhao Q 2009 Ensemble learning for question classification. In: Proceedings of Intelligent Computing and Intelligent Systems, ICIS. IEEE, pp. 501–505

Ferrucci D, Brown E, Chu-Carroll J, Fan J et al 2010 Building Watson: an overview of the DeepQA project. AI Mag. 31(3): 59–79

Pérez-Coutiño M A, Montes-y-Gómez M, López-López A and Villaseñor-Pineda L 2005 Experiments for tuning the values of lexical features in question answering for Spanish. In: CLEF Working Notes

Neumann G and Sacaleanu B 2003 A cross-language question/answering system for German and English. In: Proceedings of the Workshop of the Cross-Language Evaluation Forum for European Languages, pp. 559–571

Blunsom P, Kocik K and Curran J R 2006 Question classification with log-linear models. In: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, pp. 615–616

Rosso P, Benajiba Y and Lyhyaoui A 2006 In: Proceedings of the 4th Conference on Scientific Research Outlook and Technology Development in the Arab World, pp. 11–14

Abouenour L, Bouzoubaa K and Rosso P 2012 IDRAAQ: new Arabic question answering system based on query expansion and passage retrieval. In: Proceedings of CELCT

Sakai T, Saito Y, Ichimura Y, Koyama M, Kokubu T and Manabe T 2004 ASKMi: a Japanese question answering system based on semantic role analysis. In: Proceedings of Coupling Approaches, Coupling Media and Coupling Languages for Information Retrieval, pp. 215–231

Isozaki H, Sudoh K and Tsukada H 2005 NTT’s Japanese–English cross-language question answering system. In: Proceedings of NTCIR

Yongkui Z, Zheqian Z, Lijun B and Xinqing C 2003 Internet-based Chinese question-answering system. Comput. Eng. 15: 34

Sun A, Jiang M, He Y, Chen L and Yuan B 2008 Chinese question answering based on syntax analysis and answer classification. Acta Electron. Sin. 36(5): 833–839

Sahu S, Vasnik N and Roy D 2012 Prashnottar: a Hindi question answering system. Int. J. Comput. Sci. Inf. Technol. 4(2): 149

Nanda G, Dua M and Singla K 2016 A Hindi question answering system using machine learning approach. In: Proceedings of Computational Techniques in Information and Communication Technologies (ICCTICT). IEEE, pp. 311–314

Sekine S and Grishman R 2003 Hindi–English cross-lingual question-answering system. ACM Trans. Asian Lang. Inf. Process. 2(3): 181–192

Shukla P, Mukherjee A and Raina A 2004 Towards a language independent encoding of documents. In: Proceedings of NLUCS 2004, p. 116

Ray S K, Ahmad A and Shaalan K 2018 A review of the state of the art in Hindi question answering systems. In: Proceedings of Intelligent Natural Language Processing: Trends and Applications, pp. 265–292

Kumar P, Kashyap S, Mittal A and Gupta S 2003 A query answering system for e-learning Hindi documents. South Asian Lang. Rev. 13(1–2): 69–81

Reddy R, Reddy N and Bandyopadhyay S 2006 Dialogue based question answering system in Telugu. In: Proceedings of the Workshop on Multilingual Question Answering, pp. 53–60

Dhanjal G S, Sharma S and Sarao P K 2016 Gravity based Punjabi question answering system. Int. J. Comput. Appl. 147(3): 30–35

Bindu M S and Mary I S 2012 Design and development of a named entity based question answering system for Malayalam language. Ph.D. Thesis, Cochin University of Science and Technology

Lee C W et al 2005 ASQA: academia sinica question answering system for NTCIR-5 CLQA. In: Proceedings of the NTCIR-5 Workshop, pp. 202–208

Banerjee S and Bandyopadhyay S 2013 Ensemble approach for fine-grained question classification in Bengali. In: Proceedings of the 27th Pacific–Asia Conference on Language, Information, and Computation (PACLIC-27), pp. 75–84

Loni B, Van Tulder G, Wiggers P, Tax D M J and Loog M 2011 Question classification by weighted combination of lexical, syntactic and semantic features. In: Proceedings of the International Conference on Text, Speech, and Dialogue, pp. 243–250

Huang Z, Thint M and Celikyilmaz A 2009 Investigation of question classifier in question answering. In: Proceedings of Empirical Methods in Natural Language Processing. ACL, vol. 2, pp. 543–550

Blunsom P, Kocik K and Curran J R 2006 Question classification with log-linear models. In: Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, pp. 615–616

Diwakar S, Goyal P and Gupta R 2010 Transliteration among indian languages using WX notation. In: Proceedings of the Conference on Natural Language Processing, EPFL-CONF-168805. Saarland University Press, pp. 147–150

Banerjee S, Naskar S K and Bandyopadhyay S Bengali named entity recognition using margin infused relaxed algorithm. In: Proceedings of the International Conference on Text, Speech, and Dialogue, pp. 125–132

Li X and Roth D Learning question classifiers. In: Proceedings of the 19th International Conference on Computational Linguistics, ACL, vol. 1, pp. 1–7

Cohen J 1960 A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1): 37–46

Schapire R E 1990 The strength of weak learnability. Mach. Learn. 5(2): 197–227

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem