- -

Classifier combination approach for question classification for Bengali question answering system

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Classifier combination approach for question classification for Bengali question answering system

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Banerjee, Somnath es_ES
dc.contributor.author Kumar Naskar, Sudip es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.contributor.author Bndyopadhyay, Sivaji es_ES
dc.date.accessioned 2021-02-02T04:33:17Z
dc.date.available 2021-02-02T04:33:17Z
dc.date.issued 2019-12 es_ES
dc.identifier.issn 0256-2499 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160443
dc.description.abstract [EN] Question classification (QC) is a prime constituent of an automated question answering system. The work presented here demonstrates that a combination of multiple models achieves better classification performance than those obtained with existing individual models for the QC task in Bengali. We have exploited state-of-the-art multiple model combination techniques, i.e., ensemble, stacking and voting, to increase QC accuracy. Lexical, syntactic and semantic features of Bengali questions are used for four well-known classifiers, namely Naive Bayes, kernel Naive Bayes, Rule Induction and Decision Tree, which serve as our base learners. Single-layer question-class taxonomy with 8 coarse-grained classes is extended to two-layer taxonomy by adding 69 fine-grained classes. We carried out the experiments both on single-layer and two-layer taxonomies. Experimental results confirmed that classifier combination approaches outperform single-classifier classification approaches by 4.02% for coarse-grained question classes. Overall, the stacking approach produces the best results for fine-grained classification and achieves 87.79% of accuracy. The approach presented here could be used in other Indo-Aryan or Indic languages to develop a question answering system. es_ES
dc.description.sponsorship Somnath Banerjee and Sudip Kumar Naskar are supported by Digital India Corporation (formerly Media Lab Asia), MeitY, Government of India, under the Visvesvaraya Ph.D. Scheme for Electronics and IT. The work of Paolo Rosso was partially funded by the Spanish MICINN under the research project PGC2018-096212-B-C31. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Sadhana es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bengali question classification es_ES
dc.subject Question classification es_ES
dc.subject Classifier combinations es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Classifier combination approach for question classification for Bengali question answering system es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12046-019-1224-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Banerjee, S.; Kumar Naskar, S.; Rosso, P.; Bndyopadhyay, S. (2019). Classifier combination approach for question classification for Bengali question answering system. Sadhana. 44(12):1-14. https://doi.org/10.1007/s12046-019-1224-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12046-019-1224-8 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\409363 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Jurafsky D and Martin J H 2014 Speech and language processing. Pearson, London es_ES
dc.description.references Martin J H and Jurafsky D 2000 Speech and language processing, international edition 710 es_ES
dc.description.references Voorhees E M 2002 Overview of the TREC 2001 question answering track. NIST Special Publication, pp. 42–51 es_ES
dc.description.references Hovy E, Gerber L, Hermjakob U, Lin C Y and Ravichandran D 2001 Toward semantics-based answer pinpointing. In: Proceedings of Human Language Technology Research, ACL, pp. 1–7 es_ES
dc.description.references Ittycheriah A, Franz M, Zhu W J, Ratnaparkhi A and Mammone R J 2000 IBM’s statistical question answering system. In: Proceedings of TREC es_ES
dc.description.references Moldovan D, Paşca M, Harabagiu S and Surdeanu M 2003 Performance issues and error analysis in an open-domain question answering system. ACM Trans. Inf. Syst. 21(2): 133–154 es_ES
dc.description.references Banerjee S and Bandyopadhyay S 2012 Bengali question classification: towards developing QA system. In: Proceedings of the 3rd Workshop on South and Sotheast Asian Language Processing (SANLP), COLING, pp. 25–40 es_ES
dc.description.references Loni B 2011 A survey of state-of-the-art methods on question classification. Technical Report, Delft University of Technology es_ES
dc.description.references Hull D A 1999 Xerox TREC-8 question answering track report. In: Proceedings of TREC es_ES
dc.description.references Prager J, Radev D, Brown E, Coden A and Samn V 1999 The use of predictive annotation for question answering in TREC8. Inf. Retr. 1(3): 4 es_ES
dc.description.references Moschitti A, Quarteroni S, Basili R and Manandhar S 2007 Exploiting syntactic and shallow semantic kernels for question answer classification. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, p. 776 es_ES
dc.description.references Zhang D and Lee W S 2003 Question classification using support vector machines. In: Proceedings of Research and Development in Informaion Retrieval, ACM, pp. 26–32 es_ES
dc.description.references Huang Z, Thint M and Qin Z 2008 Question classification using head words and their hypernyms. In: Proceedings of Empirical Methods in Natural Language Processing, ACL, pp. 927–936 es_ES
dc.description.references Silva J, Coheur L, Mendes A C and Wichert A 2011 From symbolic to sub-symbolic information in question classification. Artif. Intell. Rev. 35(2): 137–154 es_ES
dc.description.references Li X and Roth D 2006 Learning question classifiers: the role of semantic information. Nat. Lang. Eng. 12(03): 229–249 es_ES
dc.description.references McCallum A, Freitag D and Pereira F C N 2000 Maximum entropy markov models for information extraction and segmentation. In: Proceedings of the International Conference on Machine Learning (ICML), vol. 17, pp. 591–598 es_ES
dc.description.references Cortes C and Vapnik V 1995 Support-vector networks. Mach. Learn. 20(3): 273–297 es_ES
dc.description.references Breiman L 1996 Bagging predictors. Mach. Learn. 24(2): 123–140 es_ES
dc.description.references Clemen R T 1989 Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5(4): 559–583 es_ES
dc.description.references Perrone M P 1993 Improving regression estimation: averaging methods for variance reduction with extensions to general convex measure optimization. Ph.D. Thesis, Brown University es_ES
dc.description.references Wolpert D H 1992 Stacked generalization. Neural Netw. 5(2): 241–259 es_ES
dc.description.references Hansen L K and Salamon P 1990 Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12: 993–1001 es_ES
dc.description.references Krogh A, Vedelsby J et al 1995 Neural network ensembles, cross validation, and active learning. Adv. Neural Inf. Process. Syst. 7: 231–238 es_ES
dc.description.references Hashem S 1997 Optimal linear combinations of neural networks. Neural Netw. 10(4): 599–614 es_ES
dc.description.references Opitz D W and Shavlik J W 1996 Actively searching for an effective neural network ensemble. Connect. Sci. 8(3–4): 337–354 es_ES
dc.description.references Opitz D W and Shavlik J W 1996 Generating accurate and diverse members of a neural-network ensemble. In: Advances in neural information processing systems, pp. 535–541 es_ES
dc.description.references Xin L, Huang X J and Wu L 2006 Question classification by ensemble learning. Int. J. Comput. Sci. Netw. Secur. 6(3): 147 es_ES
dc.description.references Schapire R E 1990 The strength of weak learnability. Mach. Learn. 5(2): 197–227 es_ES
dc.description.references Brill E 1995 Transformation-based error-driven learning and natural language processing: a case study in part-of-speech tagging. Comput. Linguist. 21(4): 543–565 es_ES
dc.description.references Jia K, Chen K, Fan X and Zhang Y 2007 Chinese question classification based on ensemble learning. In: Proceedings of ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, SNPD 2007. IEEE, vol. 3, pp. 342–347 es_ES
dc.description.references Su L, Liao H, Yu Z and Zhao Q 2009 Ensemble learning for question classification. In: Proceedings of Intelligent Computing and Intelligent Systems, ICIS. IEEE, pp. 501–505 es_ES
dc.description.references Ferrucci D, Brown E, Chu-Carroll J, Fan J et al 2010 Building Watson: an overview of the DeepQA project. AI Mag. 31(3): 59–79 es_ES
dc.description.references Pérez-Coutiño M A, Montes-y-Gómez M, López-López A and Villaseñor-Pineda L 2005 Experiments for tuning the values of lexical features in question answering for Spanish. In: CLEF Working Notes es_ES
dc.description.references Neumann G and Sacaleanu B 2003 A cross-language question/answering system for German and English. In: Proceedings of the Workshop of the Cross-Language Evaluation Forum for European Languages, pp. 559–571 es_ES
dc.description.references Blunsom P, Kocik K and Curran J R 2006 Question classification with log-linear models. In: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, pp. 615–616 es_ES
dc.description.references Rosso P, Benajiba Y and Lyhyaoui A 2006 In: Proceedings of the 4th Conference on Scientific Research Outlook and Technology Development in the Arab World, pp. 11–14 es_ES
dc.description.references Abouenour L, Bouzoubaa K and Rosso P 2012 IDRAAQ: new Arabic question answering system based on query expansion and passage retrieval. In: Proceedings of CELCT es_ES
dc.description.references Sakai T, Saito Y, Ichimura Y, Koyama M, Kokubu T and Manabe T 2004 ASKMi: a Japanese question answering system based on semantic role analysis. In: Proceedings of Coupling Approaches, Coupling Media and Coupling Languages for Information Retrieval, pp. 215–231 es_ES
dc.description.references Isozaki H, Sudoh K and Tsukada H 2005 NTT’s Japanese–English cross-language question answering system. In: Proceedings of NTCIR es_ES
dc.description.references Yongkui Z, Zheqian Z, Lijun B and Xinqing C 2003 Internet-based Chinese question-answering system. Comput. Eng. 15: 34 es_ES
dc.description.references Sun A, Jiang M, He Y, Chen L and Yuan B 2008 Chinese question answering based on syntax analysis and answer classification. Acta Electron. Sin. 36(5): 833–839 es_ES
dc.description.references Sahu S, Vasnik N and Roy D 2012 Prashnottar: a Hindi question answering system. Int. J. Comput. Sci. Inf. Technol. 4(2): 149 es_ES
dc.description.references Nanda G, Dua M and Singla K 2016 A Hindi question answering system using machine learning approach. In: Proceedings of Computational Techniques in Information and Communication Technologies (ICCTICT). IEEE, pp. 311–314 es_ES
dc.description.references Sekine S and Grishman R 2003 Hindi–English cross-lingual question-answering system. ACM Trans. Asian Lang. Inf. Process. 2(3): 181–192 es_ES
dc.description.references Shukla P, Mukherjee A and Raina A 2004 Towards a language independent encoding of documents. In: Proceedings of NLUCS 2004, p. 116 es_ES
dc.description.references Ray S K, Ahmad A and Shaalan K 2018 A review of the state of the art in Hindi question answering systems. In: Proceedings of Intelligent Natural Language Processing: Trends and Applications, pp. 265–292 es_ES
dc.description.references Kumar P, Kashyap S, Mittal A and Gupta S 2003 A query answering system for e-learning Hindi documents. South Asian Lang. Rev. 13(1–2): 69–81 es_ES
dc.description.references Reddy R, Reddy N and Bandyopadhyay S 2006 Dialogue based question answering system in Telugu. In: Proceedings of the Workshop on Multilingual Question Answering, pp. 53–60 es_ES
dc.description.references Dhanjal G S, Sharma S and Sarao P K 2016 Gravity based Punjabi question answering system. Int. J. Comput. Appl. 147(3): 30–35 es_ES
dc.description.references Bindu M S and Mary I S 2012 Design and development of a named entity based question answering system for Malayalam language. Ph.D. Thesis, Cochin University of Science and Technology es_ES
dc.description.references Lee C W et al 2005 ASQA: academia sinica question answering system for NTCIR-5 CLQA. In: Proceedings of the NTCIR-5 Workshop, pp. 202–208 es_ES
dc.description.references Banerjee S and Bandyopadhyay S 2013 Ensemble approach for fine-grained question classification in Bengali. In: Proceedings of the 27th Pacific–Asia Conference on Language, Information, and Computation (PACLIC-27), pp. 75–84 es_ES
dc.description.references Loni B, Van Tulder G, Wiggers P, Tax D M J and Loog M 2011 Question classification by weighted combination of lexical, syntactic and semantic features. In: Proceedings of the International Conference on Text, Speech, and Dialogue, pp. 243–250 es_ES
dc.description.references Huang Z, Thint M and Celikyilmaz A 2009 Investigation of question classifier in question answering. In: Proceedings of Empirical Methods in Natural Language Processing. ACL, vol. 2, pp. 543–550 es_ES
dc.description.references Blunsom P, Kocik K and Curran J R 2006 Question classification with log-linear models. In: Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, pp. 615–616 es_ES
dc.description.references Diwakar S, Goyal P and Gupta R 2010 Transliteration among indian languages using WX notation. In: Proceedings of the Conference on Natural Language Processing, EPFL-CONF-168805. Saarland University Press, pp. 147–150 es_ES
dc.description.references Banerjee S, Naskar S K and Bandyopadhyay S Bengali named entity recognition using margin infused relaxed algorithm. In: Proceedings of the International Conference on Text, Speech, and Dialogue, pp. 125–132 es_ES
dc.description.references Li X and Roth D Learning question classifiers. In: Proceedings of the 19th International Conference on Computational Linguistics, ACL, vol. 1, pp. 1–7 es_ES
dc.description.references Cohen J 1960 A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1): 37–46 es_ES
dc.description.references Schapire R E 1990 The strength of weak learnability. Mach. Learn. 5(2): 197–227 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem