- -

Global pseudodifferential operators of infinite order in classes of ultradifferentiable functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Global pseudodifferential operators of infinite order in classes of ultradifferentiable functions

Mostrar el registro completo del ítem

Asensio, V.; Jornet Casanova, D. (2019). Global pseudodifferential operators of infinite order in classes of ultradifferentiable functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):3477-3512. https://doi.org/10.1007/s13398-019-00710-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160577

Ficheros en el ítem

Metadatos del ítem

Título: Global pseudodifferential operators of infinite order in classes of ultradifferentiable functions
Autor: Asensio, Vicente Jornet Casanova, David
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Fecha difusión:
Resumen:
[EN] We develop a theory of pseudodifferential operators of infinite order for the global classes S. of ultradifferentiable functions in the sense of Bjorck, following the previous ideas given by Prangoski for ultradifferentiable ...[+]
Palabras clave: Global classes , Pseudodifferential operator , Ultradistribution , Non-quasianalytic
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-019-00710-8
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13398-019-00710-8
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/
Agradecimientos:
The first author was partially supported by the project GV Prometeo 2017/102, and the second author by the project MTM2016-76647-P. This article is part of the PhD. Thesis of V. Asensio. The authors are very grateful to ...[+]
Tipo: Artículo

References

Albanese, A.A., Jornet, D., Oliaro, A.: Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes. Math. Nachr. 285(4), 411–425 (2012)

Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6, 351–407 (1966)

Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. J. Math. Anal. Appl. 446(1), 920–944 (2017) [+]
Albanese, A.A., Jornet, D., Oliaro, A.: Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes. Math. Nachr. 285(4), 411–425 (2012)

Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6, 351–407 (1966)

Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. J. Math. Anal. Appl. 446(1), 920–944 (2017)

Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425–444 (2007)

Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Results Math. 17(3–4), 206–237 (1990)

Braun, R.W.: An extension of Komatsu’s second structure theorem for ultradistributions. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40(2), 411–417 (1993)

Cappiello, M.: Fourier integral operators of infinite order and applications to SG-hyperbolic equations. Tsukuba J. Math. 28(2), 311–361 (2004)

Cappiello, M., Pilipović, S., Prangoski, B.: Parametrices and hypoellipticity for pseudodifferential operators on spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 5(4), 491–506 (2014)

Fernández, C., Galbis, A., Jornet, D.: $$\omega $$-hypoelliptic differential operators of constant strength. J. Math. Anal. Appl. 297(2), 561–576 (2004). Special issue dedicated to John Horváth

Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Math. 167(2), 99–131 (2005)

Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340(2), 1153–1170 (2008)

Hashimoto, S., Morimoto, Y., Matsuzawa, T.: Opérateurs pseudodifférentiels et classes de Gevrey. Commun. Partial Differ. Equ. 8(12), 1277–1289 (1983)

Hörmander, L.: Pseudo-differential operators. Commun. Pure Appl. Math. 18, 501–517 (1965)

Kohn, J.J., Nirenberg, L.: An algebra of pseudo-differential operators. Commun. Pure Appl. Math. 18, 269–305 (1965)

Komatsu, H.: Ultradistributions. I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20, 25–105 (1973)

Langenbruch, M.: Continuation of Gevrey regularity for solutions of partial differential operators. In Functional analysis (Trier, 1994), pages 249–280. de Gruyter, Berlin (1996)

Nicola, F.: Rodino, Luigi: Global pseudo-differential calculus on Euclidean spaces, volume 4 of Pseudo-Differential Operators. Theory and Applications. Birkhäuser Verlag, Basel (2010)

Prangoski, B.: Pseudodifferential operators of infinite order in spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 4(4), 495–549 (2013)

Rodino, L.: Linear partial differential operators in Gevrey spaces. World Scientific Publishing Co., Inc., River Edge (1993)

Shubin, M.A.: Pseudodifferential operators and spectral theory. Springer-Verlag, Berlin, second edition. Translated from the 1978 Russian original by Stig I. Andersson (2001)

Zanghirati, L.: Pseudodifferential operators of infinite order and Gevrey classes. Ann. Univ. Ferrara Sez. VII (N.S.) 31, 197–219, 1985 (1986)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem