- -

A modelling tool for engine and exhaust aftertreatment performance analysis in altitude operation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A modelling tool for engine and exhaust aftertreatment performance analysis in altitude operation

Show simple item record

Files in this item

dc.contributor.author Serrano, J.R. es_ES
dc.contributor.author Piqueras, P. es_ES
dc.contributor.author Sanchis-Pacheco, Enrique José es_ES
dc.contributor.author Diesel Costa, Bárbara es_ES
dc.date.accessioned 2021-02-03T04:32:48Z
dc.date.available 2021-02-03T04:32:48Z
dc.date.issued 2019-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160580
dc.description.abstract [EN] New regulation standards on engine pollutant emissions are widening the engine operating conditions subjected to type approval tests as a way to prevent from the gap between regulated and real-driving emissions. In this regard, ambient temperature and driving altitude are new boundaries to be considered. Although the basis of the impact of these variables has been studied concerning the engine performance, new challenges appear to meet the emission limits and the aftertreatment conversion efficiency. In this work, a gas dynamic modelling tool is approached to explore the maximisation of the engine torque when operating at high altitude in a wide range of ambient temperatures. Particular focus is put on the modelling of the combustion, the turbocharger and the exhaust aftertreatment system. Starting from a sea-level calibration, the proposed methodology accounts for mechanical criteria as well as the impact on the engine raw emissions and exhaust flow properties to define new combustion settings for altitude operation. Next, these boundaries are applied to the exhaust aftertreatment system to analyse the impact on the catalyst conversion efficiency and the particulate filter performance concerning pressure drop and filtration efficiency. es_ES
dc.description.sponsorship This research has been partially supported by FEDER and the Government of Spain through project TRA2016-79185-R. Additionally, the Ph.D. student Bárbara Diesel has been funded by a grant from the Government of Generalitat Valenciana with reference ACIF/2018/109. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Results in Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Internal combustion engine es_ES
dc.subject Altitude es_ES
dc.subject Emissions es_ES
dc.subject Particulate matter es_ES
dc.subject Aftertreament es_ES
dc.subject Modelling es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title A modelling tool for engine and exhaust aftertreatment performance analysis in altitude operation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.rineng.2019.100054 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F109/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Serrano, J.; Piqueras, P.; Sanchis-Pacheco, EJ.; Barbara-Diesel, C. (2019). A modelling tool for engine and exhaust aftertreatment performance analysis in altitude operation. Results in Engineering. 4:1-11. https://doi.org/10.1016/j.rineng.2019.100054 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.rineng.2019.100054 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.identifier.eissn 2590-1230 es_ES
dc.relation.pasarela S\408128 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Dardiotis, C., Martini, G., Marotta, A., & Manfredi, U. (2013). Low-temperature cold-start gaseous emissions of late technology passenger cars. Applied Energy, 111, 468-478. doi:10.1016/j.apenergy.2013.04.093 es_ES
dc.description.references Ko, J., Jin, D., Jang, W., Myung, C.-L., Kwon, S., & Park, S. (2017). Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures. Applied Energy, 187, 652-662. doi:10.1016/j.apenergy.2016.11.105 es_ES
dc.description.references Cédric, L., Goriaux, M., Tassel, P., Perret, P., André, M., & Liu, Y. (2016). Impact of Aftertreatment Device and Driving Conditions on Black Carbon, Ultrafine Particle and NOx Emissions for Euro 5 Diesel and Gasoline Vehicles. Transportation Research Procedia, 14, 3079-3088. doi:10.1016/j.trpro.2016.05.454 es_ES
dc.description.references Hooftman, N., Messagie, M., Van Mierlo, J., & Coosemans, T. (2018). A review of the European passenger car regulations – Real driving emissions vs local air quality. Renewable and Sustainable Energy Reviews, 86, 1-21. doi:10.1016/j.rser.2018.01.012 es_ES
dc.description.references Serrano, J., Piqueras, P., Abbad, A., Tabet, R., Bender, S., & Gómez, J. (2019). Impact on Reduction of Pollutant Emissions from Passenger Cars when Replacing Euro 4 with Euro 6d Diesel Engines Considering the Altitude Influence. Energies, 12(7), 1278. doi:10.3390/en12071278 es_ES
dc.description.references Luján, J. M., Climent, H., García-Cuevas, L. M., & Moratal, A. (2018). Pollutant emissions and diesel oxidation catalyst performance at low ambient temperatures in transient load conditions. Applied Thermal Engineering, 129, 1527-1537. doi:10.1016/j.applthermaleng.2017.10.138 es_ES
dc.description.references Piqueras, P., García, A., Monsalve-Serrano, J., & Ruiz, M. J. (2019). Performance of a diesel oxidation catalyst under diesel-gasoline reactivity controlled compression ignition combustion conditions. Energy Conversion and Management, 196, 18-31. doi:10.1016/j.enconman.2019.05.111 es_ES
dc.description.references Faria, M. V., Varella, R. A., Duarte, G. O., Farias, T. L., & Baptista, P. C. (2018). Engine cold start analysis using naturalistic driving data: City level impacts on local pollutants emissions and energy consumption. Science of The Total Environment, 630, 544-559. doi:10.1016/j.scitotenv.2018.02.232 es_ES
dc.description.references Weber, C., Sundvor, I., & Figenbaum, E. (2019). Comparison of regulated emission factors of Euro 6 LDV in Nordic temperatures and cold start conditions: Diesel- and gasoline direct-injection. Atmospheric Environment, 206, 208-217. doi:10.1016/j.atmosenv.2019.02.031 es_ES
dc.description.references Ko, J., Myung, C.-L., & Park, S. (2019). Impacts of ambient temperature, DPF regeneration, and traffic congestion on NOx emissions from a Euro 6-compliant diesel vehicle equipped with an LNT under real-world driving conditions. Atmospheric Environment, 200, 1-14. doi:10.1016/j.atmosenv.2018.11.029 es_ES
dc.description.references Bermúdez, V., Serrano, J. R., Piqueras, P., Gómez, J., & Bender, S. (2017). Analysis of the role of altitude on diesel engine performance and emissions using an atmosphere simulator. International Journal of Engine Research, 18(1-2), 105-117. doi:10.1177/1468087416679569 es_ES
dc.description.references Ramos, Á., García-Contreras, R., & Armas, O. (2016). Performance, combustion timing and emissions from a light duty vehicle at different altitudes fueled with animal fat biodiesel, GTL and diesel fuels. Applied Energy, 182, 507-517. doi:10.1016/j.apenergy.2016.08.159 es_ES
dc.description.references Yu, L., Ge, Y., Tan, J., He, C., Wang, X., Liu, H., … Wang, X. (2014). Experimental investigation of the impact of biodiesel on the combustion and emission characteristics of a heavy duty diesel engine at various altitudes. Fuel, 115, 220-226. doi:10.1016/j.fuel.2013.06.056 es_ES
dc.description.references Wang, H., Ge, Y., Hao, L., Xu, X., Tan, J., Li, J., … Yang, R. (2018). The real driving emission characteristics of light-duty diesel vehicle at various altitudes. Atmospheric Environment, 191, 126-131. doi:10.1016/j.atmosenv.2018.07.060 es_ES
dc.description.references Hamedi, M. R., Doustdar, O., Tsolakis, A., & Hartland, J. (2019). Thermal energy storage system for efficient diesel exhaust aftertreatment at low temperatures. Applied Energy, 235, 874-887. doi:10.1016/j.apenergy.2018.11.008 es_ES
dc.description.references Luján, J. M., Serrano, J. R., Piqueras, P., & Diesel, B. (2019). Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature. Applied Energy, 240, 409-423. doi:10.1016/j.apenergy.2019.02.043 es_ES
dc.description.references Sujesh, G., & Ramesh, S. (2018). Modeling and control of diesel engines: A systematic review. Alexandria Engineering Journal, 57(4), 4033-4048. doi:10.1016/j.aej.2018.02.011 es_ES
dc.description.references Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Páez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/035109 es_ES
dc.description.references Torregrosa, A. J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2011). A fluid dynamic model for unsteady compressible flow in wall-flow diesel particulate filters. Energy, 36(1), 671-684. doi:10.1016/j.energy.2010.09.047 es_ES
dc.description.references Galindo, J., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2012). Heat transfer modelling in honeycomb wall-flow diesel particulate filters. Energy, 43(1), 201-213. doi:10.1016/j.energy.2012.04.044 es_ES
dc.description.references Macián, V., Serrano, J. R., Piqueras, P., & Sanchis, E. J. (2019). Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters. Energy, 179, 407-421. doi:10.1016/j.energy.2019.04.200 es_ES
dc.description.references Serrano, J. R., Climent, H., Piqueras, P., & Angiolini, E. (2016). Filtration modelling in wall-flow particulate filters of low soot penetration thickness. Energy, 112, 883-898. doi:10.1016/j.energy.2016.06.121 es_ES
dc.description.references Lee, K. W., & Gieseke, J. A. (1979). Collection of aerosol particles by packed beds. Environmental Science & Technology, 13(4), 466-470. doi:10.1021/es60152a013 es_ES
dc.description.references Logan, B. E., Jewett, D. G., Arnold, R. G., Bouwer, E. J., & O’Melia, C. R. (1995). Clarification of Clean-Bed Filtration Models. Journal of Environmental Engineering, 121(12), 869-873. doi:10.1061/(asce)0733-9372(1995)121:12(869) es_ES
dc.description.references Oh, S. H., & Cavendish, J. C. (1982). Transients of monolithic catalytic converters. Response to step changes in feedstream temperature as related to controlling automobile emissions. Industrial & Engineering Chemistry Product Research and Development, 21(1), 29-37. doi:10.1021/i300005a006 es_ES


This item appears in the following Collection(s)

Show simple item record