- -

Valorization of alcoholic wastes from the vinery industry to produce H2

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Valorization of alcoholic wastes from the vinery industry to produce H2

Mostrar el registro completo del ítem

Hernández Soto, MC.; Da Costa Serra, JF.; Carratalá, J.; Beneito, R.; Chica, A. (2019). Valorization of alcoholic wastes from the vinery industry to produce H2. International Journal of Hydrogen Energy. 44(20):9763-9770. https://doi.org/10.1016/j.ijhydene.2018.12.067

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160591

Ficheros en el ítem

Metadatos del ítem

Título: Valorization of alcoholic wastes from the vinery industry to produce H2
Autor: Hernández Soto, María Consuelo Da Costa Serra, Javier Francisco Carratalá, J. Beneito, R. Chica, Antonio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] This paper focuses on the development of active and stable catalysts for the steam reforming of alcoholic wastes. Two catalysts with high activity in the steam reforming of ethanol have been studied in the steam ...[+]
Palabras clave: Hydrogen production , Cobalt catalysts , Alcoholic waste
Derechos de uso: Cerrado
Fuente:
International Journal of Hydrogen Energy. (issn: 0360-3199 )
DOI: 10.1016/j.ijhydene.2018.12.067
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ijhydene.2018.12.067
Título del congreso: 9th International Conference on Hydrogen Production (ICH2P-2018)
Lugar del congreso: Zagreb, Croatia
Fecha congreso: Julio 17-19,2018
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2016-81848-REDT/ES/RED DE EXCELENCIA EN BIORREFINERIAS SOSTENIBLES/
info:eu-repo/grantAgreement/EC//LIFE15 CCM%2FES%2F000080/EU/Valorization of alcoholic wastes to produce H2 to be used in the sustainable generation of electricity/ECOELECTRICITY LIFE/
Agradecimientos:
The doctor Javier Francisco Da Costa Serra acknowledges to the Life-Ecoelectricity project for the awarded research contract. Life-ECOELECTRICITY consortium acknowledges the Life Program for funding the Life-ECOELECTRICITY ...[+]
Tipo: Artículo Comunicación en congreso

References

Liguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4), 345-354. doi:10.1016/s0926-3373(02)00327-2

Sohn, H., & Ozkan, U. S. (2016). Cobalt-Based Catalysts for Ethanol Steam Reforming: An Overview. Energy & Fuels, 30(7), 5309-5322. doi:10.1021/acs.energyfuels.6b00577

Da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., & da Silva César, A. (2017). Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 42(4), 2018-2033. doi:10.1016/j.ijhydene.2016.08.219 [+]
Liguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4), 345-354. doi:10.1016/s0926-3373(02)00327-2

Sohn, H., & Ozkan, U. S. (2016). Cobalt-Based Catalysts for Ethanol Steam Reforming: An Overview. Energy & Fuels, 30(7), 5309-5322. doi:10.1021/acs.energyfuels.6b00577

Da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., & da Silva César, A. (2017). Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 42(4), 2018-2033. doi:10.1016/j.ijhydene.2016.08.219

Muradov, N. (2017). Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. International Journal of Hydrogen Energy, 42(20), 14058-14088. doi:10.1016/j.ijhydene.2017.04.101

Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review1Journal Series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska–Lincoln.1. Bioresource Technology, 70(1), 1-15. doi:10.1016/s0960-8524(99)00025-5

Maggio, G., Freni, S., & Cavallaro, S. (1998). Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study. Journal of Power Sources, 74(1), 17-23. doi:10.1016/s0378-7753(98)00003-2

F. Brown, L. (2001). A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 26(4), 381-397. doi:10.1016/s0360-3199(00)00092-6

Ni, M., Leung, D. Y. C., Leung, M. K. H., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461-472. doi:10.1016/j.fuproc.2005.11.003

Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:  A Review. Energy & Fuels, 19(5), 2098-2106. doi:10.1021/ef0500538

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Ni, M., Leung, D. Y. C., & Leung, M. K. H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32(15), 3238-3247. doi:10.1016/j.ijhydene.2007.04.038

Nimmas, T., Jamrunroj, P., Wongsakulphasatch, S., Kiatkittipong, W., Laosiripojana, N., Gong, J., & Assabumrungrat, S. (2019). Influence of CaO precursor on CO2 capture performance and sorption-enhanced steam ethanol reforming. International Journal of Hydrogen Energy, 44(37), 20649-20662. doi:10.1016/j.ijhydene.2018.07.095

Shao, J., Zeng, G., & Li, Y. (2017). Effect of Zn substitution to a LaNiO3−δ perovskite structured catalyst in ethanol steam reforming. International Journal of Hydrogen Energy, 42(27), 17362-17375. doi:10.1016/j.ijhydene.2017.04.066

Aceves Olivas, D. Y., Baray Guerrero, M. R., Escobedo Bretado, M. A., Marques da Silva Paula, M., Salinas Gutiérrez, J., Guzmán Velderrain, V., … Collins-Martínez, V. (2014). Enhanced ethanol steam reforming by CO 2 absorption using CaO, CaO*MgO or Na 2 ZrO 3. International Journal of Hydrogen Energy, 39(29), 16595-16607. doi:10.1016/j.ijhydene.2014.04.156

Compagnoni, M., Tripodi, A., Di Michele, A., Sassi, P., Signoretto, M., & Rossetti, I. (2017). Low temperature ethanol steam reforming for process intensification: New Ni/MxO–ZrO2 active and stable catalysts prepared by flame spray pyrolysis. International Journal of Hydrogen Energy, 42(47), 28193-28213. doi:10.1016/j.ijhydene.2017.09.123

Agüero, F. N., Morales, M. R., Larrégola, S., Izurieta, E. M., Lopez, E., & Cadús, L. E. (2015). La1−xCaxAl1−yNiyO3 perovskites used as precursors of nickel based catalysts for ethanol steam reforming. International Journal of Hydrogen Energy, 40(45), 15510-15520. doi:10.1016/j.ijhydene.2015.08.051

Sharma, P. K., Saxena, N., Roy, P. K., & Bhatt, A. (2016). Hydrogen generation by ethanol steam reforming over Rh/Al2O3 and Rh/CeZrO2 catalysts: A comparative study. International Journal of Hydrogen Energy, 41(14), 6123-6133. doi:10.1016/j.ijhydene.2015.09.137

He, S., Mei, Z., Liu, N., Zhang, L., Lu, J., Li, X., … Luo, Y. (2017). Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: Effect of nickel precursor. International Journal of Hydrogen Energy, 42(21), 14429-14438. doi:10.1016/j.ijhydene.2017.02.115

Hou, J., Liu, Z.-M., Lin, G.-D., & Zhang, H.-B. (2014). Novel Ni–ZrO2 catalyst doped with Yb2O3 for ethanol steam reforming. International Journal of Hydrogen Energy, 39(3), 1315-1324. doi:10.1016/j.ijhydene.2013.10.169

Vaidya, P. D., & Rodrigues, A. E. (2006). Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chemical Engineering Journal, 117(1), 39-49. doi:10.1016/j.cej.2005.12.008

DELAPENAOSHEA, V., NAFRIA, R., RAMIREZDELAPISCINA, P., & HOMS, N. (2008). Development of robust Co-based catalysts for the selective H2-production by ethanol steam-reforming. The Fe-promoter effect. International Journal of Hydrogen Energy, 33(13), 3601-3606. doi:10.1016/j.ijhydene.2007.10.049

Da Costa-Serra, J. F., & Chica, A. (2011). Bioethanol steam reforming on Co/ITQ-18 catalyst: Effect of the crystalline structure of the delaminated zeolite ITQ-18. International Journal of Hydrogen Energy, 36(6), 3862-3869. doi:10.1016/j.ijhydene.2010.12.094

Palma, V., Castaldo, F., Ciambelli, P., Iaquaniello, G., & Capitani, G. (2013). On the activity of bimetallic catalysts for ethanol steam reforming. International Journal of Hydrogen Energy, 38(16), 6633-6645. doi:10.1016/j.ijhydene.2013.03.089

Yu, S.-W., Huang, H.-H., Tang, C.-W., & Wang, C.-B. (2014). The effect of accessible oxygen over Co3O4–CeO2 catalysts on the steam reforming of ethanol. International Journal of Hydrogen Energy, 39(35), 20700-20711. doi:10.1016/j.ijhydene.2014.07.139

Contreras, J. L., Salmones, J., Colín-Luna, J. A., Nuño, L., Quintana, B., Córdova, I., … Fuentes, G. A. (2014). Catalysts for H 2 production using the ethanol steam reforming (a review). International Journal of Hydrogen Energy, 39(33), 18835-18853. doi:10.1016/j.ijhydene.2014.08.072

Zhao, X., & Lu, G. (2016). Modulating and controlling active species dispersion over Ni–Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming. International Journal of Hydrogen Energy, 41(5), 3349-3362. doi:10.1016/j.ijhydene.2015.09.063

Ando, Y., & Matsuoka, K. (2016). Role of Fe in Co–Fe particle catalysts for suppressing CH4 production during ethanol steam reforming for hydrogen production. International Journal of Hydrogen Energy, 41(30), 12862-12868. doi:10.1016/j.ijhydene.2016.06.059

Chiou, J. Y. Z., Siang, J.-Y., Yang, S.-Y., Ho, K.-F., Lee, C.-L., Yeh, C.-T., & Wang, C.-B. (2012). Pathways of ethanol steam reforming over ceria-supported catalysts. International Journal of Hydrogen Energy, 37(18), 13667-13673. doi:10.1016/j.ijhydene.2012.02.081

Mattos, L. V., Jacobs, G., Davis, B. H., & Noronha, F. B. (2012). Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. Chemical Reviews, 112(7), 4094-4123. doi:10.1021/cr2000114

Da Costa-Serra, J. F., & Chica, A. (2018). Catalysts based on Co-Birnessite and Co-Todorokite for the efficient production of hydrogen by ethanol steam reforming. International Journal of Hydrogen Energy, 43(35), 16859-16865. doi:10.1016/j.ijhydene.2017.12.114

Mas, V., Dieuzeide, M. L., Jobbágy, M., Baronetti, G., Amadeo, N., & Laborde, M. (2008). Ni(II)-Al(III) layered double hydroxide as catalyst precursor for ethanol steam reforming: Activation treatments and kinetic studies. Catalysis Today, 133-135, 319-323. doi:10.1016/j.cattod.2007.11.032

Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2010). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the activation treatments. Catalysis Today, 149(3-4), 407-412. doi:10.1016/j.cattod.2009.05.026

Vizcaíno, A. J., Lindo, M., Carrero, A., & Calles, J. A. (2012). Hydrogen production by steam reforming of ethanol using Ni catalysts based on ternary mixed oxides prepared by coprecipitation. International Journal of Hydrogen Energy, 37(2), 1985-1992. doi:10.1016/j.ijhydene.2011.04.179

Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2014). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the Mg content. Applied Catalysis A: General, 470, 398-404. doi:10.1016/j.apcata.2013.10.054

Menor, M., Sayas, S., & Chica, A. (2017). Natural sepiolite promoted with Ni as new and efficient catalyst for the sustainable production of hydrogen by steam reforming of the biodiesel by-products glycerol. Fuel, 193, 351-358. doi:10.1016/j.fuel.2016.12.068

Liu, S., Chen, M., Chu, L., Yang, Z., Zhu, C., Wang, J., & Chen, M. (2013). Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni–Mo supported on modified sepiolite catalysts. International Journal of Hydrogen Energy, 38(10), 3948-3955. doi:10.1016/j.ijhydene.2013.01.117

Sayas, S., & Chica, A. (2014). Furfural steam reforming over Ni-based catalysts. Influence of Ni incorporation method. International Journal of Hydrogen Energy, 39(10), 5234-5241. doi:10.1016/j.ijhydene.2014.01.115

Liang, T., Wang, Y., Chen, M., Yang, Z., Liu, S., Zhou, Z., & Li, X. (2017). Steam reforming of phenol-ethanol to produce hydrogen over bimetallic Ni Cu catalysts supported on sepiolite. International Journal of Hydrogen Energy, 42(47), 28233-28246. doi:10.1016/j.ijhydene.2017.09.134

European Wine: a solid pillar of the European Union economy. In: Vins– CCEdE, editor. http://www.ceev.eu/about-the-eu-wine-sector2016.

Velu, S., & Suzuki, K. (2000). Synthesis and characterization of a new Sn-incorporated CoAl-layered double hydroxide (LDH) and catalytic performance of Co-spinel microcrystallites in the partial oxidation of methanol. Studies in Surface Science and Catalysis, 451-458. doi:10.1016/s0167-2991(00)80245-1

Wang, S.-F., Sun, G.-Z., Fang, L.-M., Lei, L., Xiang, X., & Zu, X.-T. (2015). A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Scientific Reports, 5(1). doi:10.1038/srep12849

Guil-López, R., Navarro, R. M., Peña, M. A., & Fierro, J. L. G. (2011). Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts. International Journal of Hydrogen Energy, 36(2), 1512-1523. doi:10.1016/j.ijhydene.2010.10.084

Da Costa-Serra, J. F., Guil-López, R., & Chica, A. (2010). Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases. International Journal of Hydrogen Energy, 35(13), 6709-6716. doi:10.1016/j.ijhydene.2010.04.013

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem