- -

Valorization of alcoholic wastes from the vinery industry to produce H2

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Valorization of alcoholic wastes from the vinery industry to produce H2

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández Soto, María Consuelo es_ES
dc.contributor.author Da Costa Serra, Javier Francisco es_ES
dc.contributor.author Carratalá, J. es_ES
dc.contributor.author Beneito, R. es_ES
dc.contributor.author Chica, Antonio es_ES
dc.date.accessioned 2021-02-03T04:33:21Z
dc.date.available 2021-02-03T04:33:21Z
dc.date.issued 2019-04-19 es_ES
dc.identifier.issn 0360-3199 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160591
dc.description.abstract [EN] This paper focuses on the development of active and stable catalysts for the steam reforming of alcoholic wastes. Two catalysts with high activity in the steam reforming of ethanol have been studied in the steam reforming of an alcoholic waste from the vinery industry, as previous step to their industrial scale up. The catalysts are based on cobalt supported on Zn-hydrotalcite-derived material and natural sepiolite. At laboratory level, the catalytic material based on natural sepiolite showed the best catalytic performance maintaining its catalytic activity for more than 160 h in presence of 50 ppm of sulfur contained in the alcoholic waste. Thus, sepiolite based catalyst was scaled up to prepare a first generation of catalytic monoliths. The reforming activity of this first generation of monoliths was found lower than their corresponding powdered catalyst. The high calcination temperature (1573 K) used in the manufacture of the first generation of monoliths was the responsible of their low performance, which was related to the sintering of cobalt catalyst in a larger crystallite size of metallic cobalt. A second generation of monoliths was prepared using a lower calcination temperature (873 K). Now, the monoliths exhibited a high catalytic performance, similar to the powdered catalyst. The excellent results obtained with the second generation of monoliths have been protected under an invention patent (E201731077). This is the first time that catalytic monoliths based on natural sepiolite promoted with Co are successfully manufactured and tested in the steam reforming of alcoholic wastes from the distillery industry to produce hydrogen. es_ES
dc.description.sponsorship The doctor Javier Francisco Da Costa Serra acknowledges to the Life-Ecoelectricity project for the awarded research contract. Life-ECOELECTRICITY consortium acknowledges the Life Program for funding the Life-ECOELECTRICITY project. The doctor Antonio Chica acknowledges to the RED DE EXCELENCIA EN BIORREFINERIAS SOSTENIBLES (CTQ2016-81848-REDT) for the support. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Hydrogen Energy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hydrogen production es_ES
dc.subject Cobalt catalysts es_ES
dc.subject Alcoholic waste es_ES
dc.title Valorization of alcoholic wastes from the vinery industry to produce H2 es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1016/j.ijhydene.2018.12.067 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-81848-REDT/ES/RED DE EXCELENCIA EN BIORREFINERIAS SOSTENIBLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//LIFE15 CCM%2FES%2F000080/EU/Valorization of alcoholic wastes to produce H2 to be used in the sustainable generation of electricity/ECOELECTRICITY LIFE/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Hernández Soto, MC.; Da Costa Serra, JF.; Carratalá, J.; Beneito, R.; Chica, A. (2019). Valorization of alcoholic wastes from the vinery industry to produce H2. International Journal of Hydrogen Energy. 44(20):9763-9770. https://doi.org/10.1016/j.ijhydene.2018.12.067 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 9th International Conference on Hydrogen Production (ICH2P-2018) es_ES
dc.relation.conferencedate Julio 17-19,2018 es_ES
dc.relation.conferenceplace Zagreb, Croatia es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijhydene.2018.12.067 es_ES
dc.description.upvformatpinicio 9763 es_ES
dc.description.upvformatpfin 9770 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 20 es_ES
dc.relation.pasarela S\374720 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Liguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43(4), 345-354. doi:10.1016/s0926-3373(02)00327-2 es_ES
dc.description.references Sohn, H., & Ozkan, U. S. (2016). Cobalt-Based Catalysts for Ethanol Steam Reforming: An Overview. Energy & Fuels, 30(7), 5309-5322. doi:10.1021/acs.energyfuels.6b00577 es_ES
dc.description.references Da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., & da Silva César, A. (2017). Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 42(4), 2018-2033. doi:10.1016/j.ijhydene.2016.08.219 es_ES
dc.description.references Muradov, N. (2017). Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. International Journal of Hydrogen Energy, 42(20), 14058-14088. doi:10.1016/j.ijhydene.2017.04.101 es_ES
dc.description.references Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review1Journal Series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska–Lincoln.1. Bioresource Technology, 70(1), 1-15. doi:10.1016/s0960-8524(99)00025-5 es_ES
dc.description.references Maggio, G., Freni, S., & Cavallaro, S. (1998). Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study. Journal of Power Sources, 74(1), 17-23. doi:10.1016/s0378-7753(98)00003-2 es_ES
dc.description.references F. Brown, L. (2001). A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 26(4), 381-397. doi:10.1016/s0360-3199(00)00092-6 es_ES
dc.description.references Ni, M., Leung, D. Y. C., Leung, M. K. H., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461-472. doi:10.1016/j.fuproc.2005.11.003 es_ES
dc.description.references Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:  A Review. Energy & Fuels, 19(5), 2098-2106. doi:10.1021/ef0500538 es_ES
dc.description.references Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d es_ES
dc.description.references Ni, M., Leung, D. Y. C., & Leung, M. K. H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32(15), 3238-3247. doi:10.1016/j.ijhydene.2007.04.038 es_ES
dc.description.references Nimmas, T., Jamrunroj, P., Wongsakulphasatch, S., Kiatkittipong, W., Laosiripojana, N., Gong, J., & Assabumrungrat, S. (2019). Influence of CaO precursor on CO2 capture performance and sorption-enhanced steam ethanol reforming. International Journal of Hydrogen Energy, 44(37), 20649-20662. doi:10.1016/j.ijhydene.2018.07.095 es_ES
dc.description.references Shao, J., Zeng, G., & Li, Y. (2017). Effect of Zn substitution to a LaNiO3−δ perovskite structured catalyst in ethanol steam reforming. International Journal of Hydrogen Energy, 42(27), 17362-17375. doi:10.1016/j.ijhydene.2017.04.066 es_ES
dc.description.references Aceves Olivas, D. Y., Baray Guerrero, M. R., Escobedo Bretado, M. A., Marques da Silva Paula, M., Salinas Gutiérrez, J., Guzmán Velderrain, V., … Collins-Martínez, V. (2014). Enhanced ethanol steam reforming by CO 2 absorption using CaO, CaO*MgO or Na 2 ZrO 3. International Journal of Hydrogen Energy, 39(29), 16595-16607. doi:10.1016/j.ijhydene.2014.04.156 es_ES
dc.description.references Compagnoni, M., Tripodi, A., Di Michele, A., Sassi, P., Signoretto, M., & Rossetti, I. (2017). Low temperature ethanol steam reforming for process intensification: New Ni/MxO–ZrO2 active and stable catalysts prepared by flame spray pyrolysis. International Journal of Hydrogen Energy, 42(47), 28193-28213. doi:10.1016/j.ijhydene.2017.09.123 es_ES
dc.description.references Agüero, F. N., Morales, M. R., Larrégola, S., Izurieta, E. M., Lopez, E., & Cadús, L. E. (2015). La1−xCaxAl1−yNiyO3 perovskites used as precursors of nickel based catalysts for ethanol steam reforming. International Journal of Hydrogen Energy, 40(45), 15510-15520. doi:10.1016/j.ijhydene.2015.08.051 es_ES
dc.description.references Sharma, P. K., Saxena, N., Roy, P. K., & Bhatt, A. (2016). Hydrogen generation by ethanol steam reforming over Rh/Al2O3 and Rh/CeZrO2 catalysts: A comparative study. International Journal of Hydrogen Energy, 41(14), 6123-6133. doi:10.1016/j.ijhydene.2015.09.137 es_ES
dc.description.references He, S., Mei, Z., Liu, N., Zhang, L., Lu, J., Li, X., … Luo, Y. (2017). Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: Effect of nickel precursor. International Journal of Hydrogen Energy, 42(21), 14429-14438. doi:10.1016/j.ijhydene.2017.02.115 es_ES
dc.description.references Hou, J., Liu, Z.-M., Lin, G.-D., & Zhang, H.-B. (2014). Novel Ni–ZrO2 catalyst doped with Yb2O3 for ethanol steam reforming. International Journal of Hydrogen Energy, 39(3), 1315-1324. doi:10.1016/j.ijhydene.2013.10.169 es_ES
dc.description.references Vaidya, P. D., & Rodrigues, A. E. (2006). Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chemical Engineering Journal, 117(1), 39-49. doi:10.1016/j.cej.2005.12.008 es_ES
dc.description.references DELAPENAOSHEA, V., NAFRIA, R., RAMIREZDELAPISCINA, P., & HOMS, N. (2008). Development of robust Co-based catalysts for the selective H2-production by ethanol steam-reforming. The Fe-promoter effect. International Journal of Hydrogen Energy, 33(13), 3601-3606. doi:10.1016/j.ijhydene.2007.10.049 es_ES
dc.description.references Da Costa-Serra, J. F., & Chica, A. (2011). Bioethanol steam reforming on Co/ITQ-18 catalyst: Effect of the crystalline structure of the delaminated zeolite ITQ-18. International Journal of Hydrogen Energy, 36(6), 3862-3869. doi:10.1016/j.ijhydene.2010.12.094 es_ES
dc.description.references Palma, V., Castaldo, F., Ciambelli, P., Iaquaniello, G., & Capitani, G. (2013). On the activity of bimetallic catalysts for ethanol steam reforming. International Journal of Hydrogen Energy, 38(16), 6633-6645. doi:10.1016/j.ijhydene.2013.03.089 es_ES
dc.description.references Yu, S.-W., Huang, H.-H., Tang, C.-W., & Wang, C.-B. (2014). The effect of accessible oxygen over Co3O4–CeO2 catalysts on the steam reforming of ethanol. International Journal of Hydrogen Energy, 39(35), 20700-20711. doi:10.1016/j.ijhydene.2014.07.139 es_ES
dc.description.references Contreras, J. L., Salmones, J., Colín-Luna, J. A., Nuño, L., Quintana, B., Córdova, I., … Fuentes, G. A. (2014). Catalysts for H 2 production using the ethanol steam reforming (a review). International Journal of Hydrogen Energy, 39(33), 18835-18853. doi:10.1016/j.ijhydene.2014.08.072 es_ES
dc.description.references Zhao, X., & Lu, G. (2016). Modulating and controlling active species dispersion over Ni–Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming. International Journal of Hydrogen Energy, 41(5), 3349-3362. doi:10.1016/j.ijhydene.2015.09.063 es_ES
dc.description.references Ando, Y., & Matsuoka, K. (2016). Role of Fe in Co–Fe particle catalysts for suppressing CH4 production during ethanol steam reforming for hydrogen production. International Journal of Hydrogen Energy, 41(30), 12862-12868. doi:10.1016/j.ijhydene.2016.06.059 es_ES
dc.description.references Chiou, J. Y. Z., Siang, J.-Y., Yang, S.-Y., Ho, K.-F., Lee, C.-L., Yeh, C.-T., & Wang, C.-B. (2012). Pathways of ethanol steam reforming over ceria-supported catalysts. International Journal of Hydrogen Energy, 37(18), 13667-13673. doi:10.1016/j.ijhydene.2012.02.081 es_ES
dc.description.references Mattos, L. V., Jacobs, G., Davis, B. H., & Noronha, F. B. (2012). Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. Chemical Reviews, 112(7), 4094-4123. doi:10.1021/cr2000114 es_ES
dc.description.references Da Costa-Serra, J. F., & Chica, A. (2018). Catalysts based on Co-Birnessite and Co-Todorokite for the efficient production of hydrogen by ethanol steam reforming. International Journal of Hydrogen Energy, 43(35), 16859-16865. doi:10.1016/j.ijhydene.2017.12.114 es_ES
dc.description.references Mas, V., Dieuzeide, M. L., Jobbágy, M., Baronetti, G., Amadeo, N., & Laborde, M. (2008). Ni(II)-Al(III) layered double hydroxide as catalyst precursor for ethanol steam reforming: Activation treatments and kinetic studies. Catalysis Today, 133-135, 319-323. doi:10.1016/j.cattod.2007.11.032 es_ES
dc.description.references Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2010). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the activation treatments. Catalysis Today, 149(3-4), 407-412. doi:10.1016/j.cattod.2009.05.026 es_ES
dc.description.references Vizcaíno, A. J., Lindo, M., Carrero, A., & Calles, J. A. (2012). Hydrogen production by steam reforming of ethanol using Ni catalysts based on ternary mixed oxides prepared by coprecipitation. International Journal of Hydrogen Energy, 37(2), 1985-1992. doi:10.1016/j.ijhydene.2011.04.179 es_ES
dc.description.references Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., & Amadeo, N. (2014). Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: Influence of the Mg content. Applied Catalysis A: General, 470, 398-404. doi:10.1016/j.apcata.2013.10.054 es_ES
dc.description.references Menor, M., Sayas, S., & Chica, A. (2017). Natural sepiolite promoted with Ni as new and efficient catalyst for the sustainable production of hydrogen by steam reforming of the biodiesel by-products glycerol. Fuel, 193, 351-358. doi:10.1016/j.fuel.2016.12.068 es_ES
dc.description.references Liu, S., Chen, M., Chu, L., Yang, Z., Zhu, C., Wang, J., & Chen, M. (2013). Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni–Mo supported on modified sepiolite catalysts. International Journal of Hydrogen Energy, 38(10), 3948-3955. doi:10.1016/j.ijhydene.2013.01.117 es_ES
dc.description.references Sayas, S., & Chica, A. (2014). Furfural steam reforming over Ni-based catalysts. Influence of Ni incorporation method. International Journal of Hydrogen Energy, 39(10), 5234-5241. doi:10.1016/j.ijhydene.2014.01.115 es_ES
dc.description.references Liang, T., Wang, Y., Chen, M., Yang, Z., Liu, S., Zhou, Z., & Li, X. (2017). Steam reforming of phenol-ethanol to produce hydrogen over bimetallic Ni Cu catalysts supported on sepiolite. International Journal of Hydrogen Energy, 42(47), 28233-28246. doi:10.1016/j.ijhydene.2017.09.134 es_ES
dc.description.references European Wine: a solid pillar of the European Union economy. In: Vins– CCEdE, editor. http://www.ceev.eu/about-the-eu-wine-sector2016. es_ES
dc.description.references Velu, S., & Suzuki, K. (2000). Synthesis and characterization of a new Sn-incorporated CoAl-layered double hydroxide (LDH) and catalytic performance of Co-spinel microcrystallites in the partial oxidation of methanol. Studies in Surface Science and Catalysis, 451-458. doi:10.1016/s0167-2991(00)80245-1 es_ES
dc.description.references Wang, S.-F., Sun, G.-Z., Fang, L.-M., Lei, L., Xiang, X., & Zu, X.-T. (2015). A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Scientific Reports, 5(1). doi:10.1038/srep12849 es_ES
dc.description.references Guil-López, R., Navarro, R. M., Peña, M. A., & Fierro, J. L. G. (2011). Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts. International Journal of Hydrogen Energy, 36(2), 1512-1523. doi:10.1016/j.ijhydene.2010.10.084 es_ES
dc.description.references Da Costa-Serra, J. F., Guil-López, R., & Chica, A. (2010). Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases. International Journal of Hydrogen Energy, 35(13), 6709-6716. doi:10.1016/j.ijhydene.2010.04.013 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem