- -

Completability and optimal factorization norms in tensor products of Banach function spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Completability and optimal factorization norms in tensor products of Banach function spaces

Show full item record

Calabuig, JM.; Fernández-Unzueta, M.; Galaz-Fontes, F.; Sánchez Pérez, EA. (2019). Completability and optimal factorization norms in tensor products of Banach function spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):3513-3530. https://doi.org/10.1007/s13398-019-00711-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160592

Files in this item

Item Metadata

Title: Completability and optimal factorization norms in tensor products of Banach function spaces
Author: Calabuig, J. M. Fernández-Unzueta, M. Galaz-Fontes, F. Sánchez Pérez, Enrique Alfonso
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] Given s-finite measure spaces ( 1, 1, mu 1) and ( 2, 2, mu 2), we consider Banach spaces X1(mu 1) and X2(mu 2), consisting of L0(mu 1) and L0(mu 2) measurable functions respectively, and study when the completion of ...[+]
Subjects: Product measure , Banach function space , Bilinear operator , Tensor product , Factorization
Copyrigths: Reserva de todos los derechos
Source:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-019-00711-7
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s13398-019-00711-7
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2014-53009-P/ES/ANALISIS VECTORIAL, MULTILINEAL Y APLICACIONES/
info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/
info:eu-repo/grantAgreement/MICINN//MTM2009-14483-C02-01/ES/Operadores, Interpolacion Y Espacios De Funciones Integrables Respecto A Una Medida Vectorial/
info:eu-repo/grantAgreement/CONACyT//284110/
Thanks:
J. M. Calabuig and M. Fernandez-Unzueta were supported by Ministerio de Economia, Industria y Competitividad (Spain) under project MTM2014-53009-P. M. Fernandez-Unzueta was also suported by CONACyT 284110. F. Galaz-Fontes ...[+]
Type: Artículo

References

Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. Graduate Studies in Mathematics, Vol 50, AMS (2002)

Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

Bu, Q., Buskes, G., Kusraev, A.G.: Bilinear maps on products of vector lattices: a survey. In: Boulabiar, K., Buskes, G., Triki, A. (eds.) Positivity-Trends in Mathematics. Birkhäser Verlag AG, Basel, pp. 97–26 (2007) [+]
Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. Graduate Studies in Mathematics, Vol 50, AMS (2002)

Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

Bu, Q., Buskes, G., Kusraev, A.G.: Bilinear maps on products of vector lattices: a survey. In: Boulabiar, K., Buskes, G., Triki, A. (eds.) Positivity-Trends in Mathematics. Birkhäser Verlag AG, Basel, pp. 97–26 (2007)

Buskes, G., Van Rooij, A.: Bounded variation and tensor products of Banach lattices. Positivity 7, 47–59 (2003)

Calabuig, J.M., Fernández-Unzueta, M., Galaz-Fontes, F., Sánchez-Pérez, E.A.: Extending and factorizing bounded bilinear maps defined on order continuous Banach function spaces. RACSAM 108(2), 353–367 (2014)

Calabuig, J.M., Fernández-Unzueta, M., Galaz-Fontes, F., Sánchez-Pérez, E.A.: Equivalent norms in a Banach function space and the subsequence property. J. Korean Math. Soc. https://doi.org/10.4134/JKMS.j180682

Curbera, G.P., Ricker, W.J.: Optimal domains for kernel operators via interpolation. Math. Nachr. 244, 47–63 (2002)

Curbera, G.P., Ricker, W.J.: Vector measures, integration and applications. In: Positivity. Birkhäuser Basel, pp. 127–160 (2007)

Gil de Lamadrid, J.: Uniform cross norms and tensor products. J. Duke Math. 32, 797–803 (1965)

Dunford, N., Schwartz, J.: Linear Operators, Part I: General Theory. Interscience Publishers Inc., New York (1958)

Fremlin, D.H.: Tensor products of Archimedean vector lattices. Am. J. Math. 94(3), 777–798 (1972)

Fremlin, D.H.: Tensor products of Banach lattices. Math. Ann. 211(2), 87–106 (1974)

Yew, K.L.: Completely $$p$$-summing maps on the operator Hilbert space OH. J. Funct. Anal. 255, 1362–1402 (2008)

Kwapien, S., Pelczynski, A.: The main triangle projection in matrix spaces and its applications. Stud. Math. 34(1), 43–68 (1970)

Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer, Berlin (1979)

Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland Publishing Company, Amsterdam (1971)

Milman, M.: Some new function spaces and their tensor products. Depto. de Matemática, Facultad de Ciencias, U. de los Andes, Mérida, Venezuela (1978)

Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces. Oper. Theory Adv. Appl., vol. 180. Birkhäuser, Basel (2008)

Schep, A.R.: Factorization of positive multilinear maps. Illinois J. Math. 579–591 (1984)

Zaanen, A.C.: Integration. North-Holland Publishing Company, Amsterdam-New York (1967)

Zaanen, A.C.: Riesz Spaces II. North-Holland Publishing Company, Amsterdam (1983)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record