- -

Completability and optimal factorization norms in tensor products of Banach function spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Completability and optimal factorization norms in tensor products of Banach function spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calabuig, J. M. es_ES
dc.contributor.author Fernández-Unzueta, M. es_ES
dc.contributor.author Galaz-Fontes, F. es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2021-02-03T04:33:22Z
dc.date.available 2021-02-03T04:33:22Z
dc.date.issued 2019-10 es_ES
dc.identifier.issn 1578-7303 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160592
dc.description.abstract [EN] Given s-finite measure spaces ( 1, 1, mu 1) and ( 2, 2, mu 2), we consider Banach spaces X1(mu 1) and X2(mu 2), consisting of L0(mu 1) and L0(mu 2) measurable functions respectively, and study when the completion of the simple tensors in the projective tensor product X1(mu 1). p X2(mu 2) is continuously included in the metric space of measurable functions L0(mu 1. mu 2). In particular, we prove that the elements of the completion of the projective tensor product of L p-spaces are measurable functions with respect to the product measure. Assuming certain conditions, we finally showthat given a bounded linear operator T : X1(mu 1). p X2(mu 2). E (where E is a Banach space), a norm can be found for T to be bounded, which is ` minimal' with respect to a given property (2-rectangularity). The same technique may work for the case of n-spaces. es_ES
dc.description.sponsorship J. M. Calabuig and M. Fernandez-Unzueta were supported by Ministerio de Economia, Industria y Competitividad (Spain) under project MTM2014-53009-P. M. Fernandez-Unzueta was also suported by CONACyT 284110. F. Galaz-Fontes was supported by Ministerio de Ciencia e Innovacion (Spain) and FEDER under project MTM2009-14483-C02-01. E. A. Sanchez Perez was supported by Ministerio de Economia, Industria y Competitividad (Spain) and FEDER under project MTM2016-77054-C2-1-P. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Product measure es_ES
dc.subject Banach function space es_ES
dc.subject Bilinear operator es_ES
dc.subject Tensor product es_ES
dc.subject Factorization es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Completability and optimal factorization norms in tensor products of Banach function spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13398-019-00711-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-53009-P/ES/ANALISIS VECTORIAL, MULTILINEAL Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-14483-C02-01/ES/Operadores, Interpolacion Y Espacios De Funciones Integrables Respecto A Una Medida Vectorial/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//284110/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calabuig, JM.; Fernández-Unzueta, M.; Galaz-Fontes, F.; Sánchez Pérez, EA. (2019). Completability and optimal factorization norms in tensor products of Banach function spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):3513-3530. https://doi.org/10.1007/s13398-019-00711-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13398-019-00711-7 es_ES
dc.description.upvformatpinicio 3513 es_ES
dc.description.upvformatpfin 3530 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 113 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\404041 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. Graduate Studies in Mathematics, Vol 50, AMS (2002) es_ES
dc.description.references Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988) es_ES
dc.description.references Bu, Q., Buskes, G., Kusraev, A.G.: Bilinear maps on products of vector lattices: a survey. In: Boulabiar, K., Buskes, G., Triki, A. (eds.) Positivity-Trends in Mathematics. Birkhäser Verlag AG, Basel, pp. 97–26 (2007) es_ES
dc.description.references Buskes, G., Van Rooij, A.: Bounded variation and tensor products of Banach lattices. Positivity 7, 47–59 (2003) es_ES
dc.description.references Calabuig, J.M., Fernández-Unzueta, M., Galaz-Fontes, F., Sánchez-Pérez, E.A.: Extending and factorizing bounded bilinear maps defined on order continuous Banach function spaces. RACSAM 108(2), 353–367 (2014) es_ES
dc.description.references Calabuig, J.M., Fernández-Unzueta, M., Galaz-Fontes, F., Sánchez-Pérez, E.A.: Equivalent norms in a Banach function space and the subsequence property. J. Korean Math. Soc. https://doi.org/10.4134/JKMS.j180682 es_ES
dc.description.references Curbera, G.P., Ricker, W.J.: Optimal domains for kernel operators via interpolation. Math. Nachr. 244, 47–63 (2002) es_ES
dc.description.references Curbera, G.P., Ricker, W.J.: Vector measures, integration and applications. In: Positivity. Birkhäuser Basel, pp. 127–160 (2007) es_ES
dc.description.references Gil de Lamadrid, J.: Uniform cross norms and tensor products. J. Duke Math. 32, 797–803 (1965) es_ES
dc.description.references Dunford, N., Schwartz, J.: Linear Operators, Part I: General Theory. Interscience Publishers Inc., New York (1958) es_ES
dc.description.references Fremlin, D.H.: Tensor products of Archimedean vector lattices. Am. J. Math. 94(3), 777–798 (1972) es_ES
dc.description.references Fremlin, D.H.: Tensor products of Banach lattices. Math. Ann. 211(2), 87–106 (1974) es_ES
dc.description.references Yew, K.L.: Completely $$p$$-summing maps on the operator Hilbert space OH. J. Funct. Anal. 255, 1362–1402 (2008) es_ES
dc.description.references Kwapien, S., Pelczynski, A.: The main triangle projection in matrix spaces and its applications. Stud. Math. 34(1), 43–68 (1970) es_ES
dc.description.references Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer, Berlin (1979) es_ES
dc.description.references Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland Publishing Company, Amsterdam (1971) es_ES
dc.description.references Milman, M.: Some new function spaces and their tensor products. Depto. de Matemática, Facultad de Ciencias, U. de los Andes, Mérida, Venezuela (1978) es_ES
dc.description.references Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces. Oper. Theory Adv. Appl., vol. 180. Birkhäuser, Basel (2008) es_ES
dc.description.references Schep, A.R.: Factorization of positive multilinear maps. Illinois J. Math. 579–591 (1984) es_ES
dc.description.references Zaanen, A.C.: Integration. North-Holland Publishing Company, Amsterdam-New York (1967) es_ES
dc.description.references Zaanen, A.C.: Riesz Spaces II. North-Holland Publishing Company, Amsterdam (1983) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem