Mostrar el registro sencillo del ítem
dc.contributor.author | Selim, H. | es_ES |
dc.contributor.author | Trull, J. | es_ES |
dc.contributor.author | Delgado, M. | es_ES |
dc.contributor.author | Picó Vila, Rubén | es_ES |
dc.contributor.author | Romeral, Luis | es_ES |
dc.contributor.author | Cojocaru, C. | es_ES |
dc.date.accessioned | 2021-02-03T04:33:37Z | |
dc.date.available | 2021-02-03T04:33:37Z | |
dc.date.issued | 2019-05-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160597 | |
dc.description.abstract | [EN] Nondestructive testing of metallic objects that may contain embedded defects of different sizes is an important application in many industrial branches for quality control. Most of these techniques allow defect detection and its approximate localization, but few methods give enough information for its 3D reconstruction. Here we present a hybrid laser-transducer system that combines remote, laser-generated ultrasound excitation and noncontact ultrasonic transducer detection. This fully noncontact method allows access to scan areas on different object's faces and defect details from different angles/perspectives. This hybrid system can analyze the object's volume data and allows a 3D reconstruction image of the embedded defects. As a novelty for signal processing improvement, we use a 2D apodization window filtering technique, applied along with the synthetic aperture focusing algorithm, to remove the undesired effects due to side lobes and wide-angle reflections of propagating ultrasound waves, thus enhancing the resulting 3D image of the defect. Finally, we provide both qualitative and quantitative volumetric results that yield valuable information about defect location and size. | es_ES |
dc.description.sponsorship | The work was supported by Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-1 and FIS2015-65998-C2-2 and by project AICO/2016/060 by Conselleria de Educacion, Investigacion, Cultura y Deporte de la Generalitat Valenciana. H. Selim, J. Trull and C. Cojocaru acknowledge partial support from US Army Research, Development, and Engineering Command (RDECOM) through project W911NF-16-1-0563. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Laser ultrasonics | es_ES |
dc.subject | Noncontact transducers | es_ES |
dc.subject | NDT | es_ES |
dc.subject | SAFT | es_ES |
dc.subject | Apodization | es_ES |
dc.subject | 3D reconstruction | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19092138 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-1-P/ES/ONDAS DE LUZ EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RDECOM//W911NF-16-1-0563/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F060/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Selim, H.; Trull, J.; Delgado, M.; Picó Vila, R.; Romeral, L.; Cojocaru, C. (2019). Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window. Sensors. 19(9):1-15. https://doi.org/10.3390/s19092138 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19092138 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 31072063 | es_ES |
dc.identifier.pmcid | PMC6539283 | es_ES |
dc.relation.pasarela | S\387663 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Research, Development and Engineering Command | es_ES |
dc.description.references | Her, S.-C., & Lin, S.-T. (2014). Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis. Sensors, 14(9), 17146-17158. doi:10.3390/s140917146 | es_ES |
dc.description.references | Mi, B., Michaels, J. E., & Michaels, T. E. (2006). An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth. The Journal of the Acoustical Society of America, 119(1), 74-85. doi:10.1121/1.2139647 | es_ES |
dc.description.references | Cheng, Y., Deng, Y., Cao, J., Xiong, X., Bai, L., & Li, Z. (2013). Multi-Wave and Hybrid Imaging Techniques: A New Direction for Nondestructive Testing and Structural Health Monitoring. Sensors, 13(12), 16146-16190. doi:10.3390/s131216146 | es_ES |
dc.description.references | Delrue, S., Van Den Abeele, K., Blomme, E., Deveugele, J., Lust, P., & Matar, O. B. (2010). Two-dimensional simulation of the single-sided air-coupled ultrasonic pitch-catch technique for non-destructive testing. Ultrasonics, 50(2), 188-196. doi:10.1016/j.ultras.2009.08.005 | es_ES |
dc.description.references | Delrue, S., Tabatabaeipour, M., Hettler, J., & Van Den Abeele, K. (2016). Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds. Ultrasonics, 68, 71-79. doi:10.1016/j.ultras.2016.02.012 | es_ES |
dc.description.references | Bai, Z., Chen, S., Xiao, Q., Jia, L., Zhao, Y., & Zeng, Z. (2017). Compressive sensing of phased array ultrasonic signal in defect detection: Simulation study and experimental verification. Structural Health Monitoring, 17(3), 434-449. doi:10.1177/1475921717701462 | es_ES |
dc.description.references | Ciampa, F., Mankar, A., & Marini, A. (2017). Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing. Scientific Reports, 7(1). doi:10.1038/s41598-017-14594-4 | es_ES |
dc.description.references | Miniaci, M., Gliozzi, A. S., Morvan, B., Krushynska, A., Bosia, F., Scalerandi, M., & Pugno, N. M. (2017). Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals. Physical Review Letters, 118(21). doi:10.1103/physrevlett.118.214301 | es_ES |
dc.description.references | Tiwari, K. A., Raisutis, R., Tumsys, O., Ostreika, A., Jankauskas, K., & Jakutavicius, J. (2019). Defect Estimation in Non-Destructive Testing of Composites by Ultrasonic Guided Waves and Image Processing. Electronics, 8(3), 315. doi:10.3390/electronics8030315 | es_ES |
dc.description.references | Le, M., Kim, J., Kim, S., & Lee, J. (2016). Nondestructive testing of pitting corrosion cracks in rivet of multilayer structures. International Journal of Precision Engineering and Manufacturing, 17(11), 1433-1442. doi:10.1007/s12541-016-0169-7 | es_ES |
dc.description.references | Selim, H., Delgado Prieto, M., Trull, J., Romeral, L., & Cojocaru, C. (2019). Laser Ultrasound Inspection Based on Wavelet Transform and Data Clustering for Defect Estimation in Metallic Samples. Sensors, 19(3), 573. doi:10.3390/s19030573 | es_ES |
dc.description.references | Prada, C., Kerbrat, E., Cassereau, D., & Fink, M. (2002). Time reversal techniques in ultrasonic nondestructive testing of scattering media. Inverse Problems, 18(6), 1761-1773. doi:10.1088/0266-5611/18/6/320 | es_ES |
dc.description.references | Spies, M., Rieder, H., Dillhöfer, A., Schmitz, V., & Müller, W. (2012). Synthetic Aperture Focusing and Time-of-Flight Diffraction Ultrasonic Imaging—Past and Present. Journal of Nondestructive Evaluation, 31(4), 310-323. doi:10.1007/s10921-012-0150-z | es_ES |
dc.description.references | Tiwari, K., Raisutis, R., & Samaitis, V. (2017). Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures. Sensors, 17(12), 2858. doi:10.3390/s17122858 | es_ES |
dc.description.references | Boonsang, S., Zainal, J., & Dewhurst, R. J. (2004). Synthetic aperture focusing techniques in time and frequency domains for photoacoustic imaging. Insight - Non-Destructive Testing and Condition Monitoring, 46(4), 196-199. doi:10.1784/insi.46.4.196.55648 | es_ES |
dc.description.references | Guarneri, G., Pipa, D., Junior, F., de Arruda, L., & Zibetti, M. (2015). A Sparse Reconstruction Algorithm for Ultrasonic Images in Nondestructive Testing. Sensors, 15(4), 9324-9343. doi:10.3390/s150409324 | es_ES |
dc.description.references | Gómez, M., Castejón, C., & García-Prada, J. (2016). Review of Recent Advances in the Application of the Wavelet Transform to Diagnose Cracked Rotors. Algorithms, 9(1), 19. doi:10.3390/a9010019 | es_ES |
dc.description.references | Selim, H., Delgado, M., Trull, J., Picó, R., & Cojocaru, C. (2018). Material Defect Reconstruction by Non-Destructive Testing with Laser Induced Ultrasonics. Journal of Physics: Conference Series, 1149, 012011. doi:10.1088/1742-6596/1149/1/012011 | es_ES |
dc.description.references | De Marchi, L., Marzani, A., & Miniaci, M. (2013). A dispersion compensation procedure to extend pulse-echo defects location to irregular waveguides. NDT & E International, 54, 115-122. doi:10.1016/j.ndteint.2012.12.009 | es_ES |
dc.description.references | Krohn, N., Pfleiderer, K., Stoessel, R., Solodov, I., & Busse, G. (2004). Nonlinear Acoustic Imaging: Fundamentals, Methodology, and NDE-Applications. Acoustical Imaging, 91-98. doi:10.1007/978-1-4020-2402-3_12 | es_ES |
dc.description.references | Ulrich, T. J., Johnson, P. A., & Sutin, A. (2006). Imaging nonlinear scatterers applying the time reversal mirror. The Journal of the Acoustical Society of America, 119(3), 1514-1518. doi:10.1121/1.2168413 | es_ES |
dc.description.references | Miniaci, M., Mazzotti, M., Radzieński, M., Kudela, P., Kherraz, N., Bosia, F., … Ostachowicz, W. (2019). Application of a Laser-Based Time Reversal Algorithm for Impact Localization in a Stiffened Aluminum Plate. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00030 | es_ES |
dc.description.references | Kreis, T. (2016). Application of Digital Holography for Nondestructive Testing and Metrology: A Review. IEEE Transactions on Industrial Informatics, 12(1), 240-247. doi:10.1109/tii.2015.2482900 | es_ES |
dc.description.references | Zhang, K., Zhou, Z., & Zhou, J. (2015). Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process. Applied Optics, 54(25), 7483. doi:10.1364/ao.54.007483 | es_ES |
dc.description.references | Streza, M., Dadarlat, D., Fedala, Y., & Longuemart, S. (2013). Depth estimation of surface cracks on metallic components by means of lock-in thermography. Review of Scientific Instruments, 84(7), 074902. doi:10.1063/1.4813744 | es_ES |
dc.description.references | Jensen, J. A., Nikolov, S. I., Gammelmark, K. L., & Pedersen, M. H. (2006). Synthetic aperture ultrasound imaging. Ultrasonics, 44, e5-e15. doi:10.1016/j.ultras.2006.07.017 | es_ES |
dc.description.references | Ultrasonic Transducers. Vol. Pana_UT_ENhttp://www.epsilon-ndt.com/upload/file/problar-ve-aksesuarlar-.pdf | es_ES |
dc.description.references | Cong, S., Zhang, W. W., Zhang, J. Y., & Gang, T. (2017). Analysis on Ultrasonic TOFD Imaging Testing for Ultra-thick-walled EBW Joint of Aluminum Alloy. Procedia Engineering, 207, 1910-1915. doi:10.1016/j.proeng.2017.10.960 | es_ES |
dc.description.references | Wang, X.-G., Wu, W.-L., Huang, Z.-C., Chang, J.-J., & Wu, N.-X. (2018). Research on the Transmission Characteristics of Air-Coupled Ultrasound in Double-Layered Bonded Structures. Materials, 11(2), 310. doi:10.3390/ma11020310 | es_ES |