- -

Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Selim, H. es_ES
dc.contributor.author Trull, J. es_ES
dc.contributor.author Delgado, M. es_ES
dc.contributor.author Picó Vila, Rubén es_ES
dc.contributor.author Romeral, Luis es_ES
dc.contributor.author Cojocaru, C. es_ES
dc.date.accessioned 2021-02-03T04:33:37Z
dc.date.available 2021-02-03T04:33:37Z
dc.date.issued 2019-05-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160597
dc.description.abstract [EN] Nondestructive testing of metallic objects that may contain embedded defects of different sizes is an important application in many industrial branches for quality control. Most of these techniques allow defect detection and its approximate localization, but few methods give enough information for its 3D reconstruction. Here we present a hybrid laser-transducer system that combines remote, laser-generated ultrasound excitation and noncontact ultrasonic transducer detection. This fully noncontact method allows access to scan areas on different object's faces and defect details from different angles/perspectives. This hybrid system can analyze the object's volume data and allows a 3D reconstruction image of the embedded defects. As a novelty for signal processing improvement, we use a 2D apodization window filtering technique, applied along with the synthetic aperture focusing algorithm, to remove the undesired effects due to side lobes and wide-angle reflections of propagating ultrasound waves, thus enhancing the resulting 3D image of the defect. Finally, we provide both qualitative and quantitative volumetric results that yield valuable information about defect location and size. es_ES
dc.description.sponsorship The work was supported by Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-1 and FIS2015-65998-C2-2 and by project AICO/2016/060 by Conselleria de Educacion, Investigacion, Cultura y Deporte de la Generalitat Valenciana. H. Selim, J. Trull and C. Cojocaru acknowledge partial support from US Army Research, Development, and Engineering Command (RDECOM) through project W911NF-16-1-0563. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Laser ultrasonics es_ES
dc.subject Noncontact transducers es_ES
dc.subject NDT es_ES
dc.subject SAFT es_ES
dc.subject Apodization es_ES
dc.subject 3D reconstruction es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19092138 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-1-P/ES/ONDAS DE LUZ EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RDECOM//W911NF-16-1-0563/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F060/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Selim, H.; Trull, J.; Delgado, M.; Picó Vila, R.; Romeral, L.; Cojocaru, C. (2019). Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window. Sensors. 19(9):1-15. https://doi.org/10.3390/s19092138 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19092138 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31072063 es_ES
dc.identifier.pmcid PMC6539283 es_ES
dc.relation.pasarela S\387663 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Research, Development and Engineering Command es_ES
dc.description.references Her, S.-C., & Lin, S.-T. (2014). Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis. Sensors, 14(9), 17146-17158. doi:10.3390/s140917146 es_ES
dc.description.references Mi, B., Michaels, J. E., & Michaels, T. E. (2006). An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth. The Journal of the Acoustical Society of America, 119(1), 74-85. doi:10.1121/1.2139647 es_ES
dc.description.references Cheng, Y., Deng, Y., Cao, J., Xiong, X., Bai, L., & Li, Z. (2013). Multi-Wave and Hybrid Imaging Techniques: A New Direction for Nondestructive Testing and Structural Health Monitoring. Sensors, 13(12), 16146-16190. doi:10.3390/s131216146 es_ES
dc.description.references Delrue, S., Van Den Abeele, K., Blomme, E., Deveugele, J., Lust, P., & Matar, O. B. (2010). Two-dimensional simulation of the single-sided air-coupled ultrasonic pitch-catch technique for non-destructive testing. Ultrasonics, 50(2), 188-196. doi:10.1016/j.ultras.2009.08.005 es_ES
dc.description.references Delrue, S., Tabatabaeipour, M., Hettler, J., & Van Den Abeele, K. (2016). Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds. Ultrasonics, 68, 71-79. doi:10.1016/j.ultras.2016.02.012 es_ES
dc.description.references Bai, Z., Chen, S., Xiao, Q., Jia, L., Zhao, Y., & Zeng, Z. (2017). Compressive sensing of phased array ultrasonic signal in defect detection: Simulation study and experimental verification. Structural Health Monitoring, 17(3), 434-449. doi:10.1177/1475921717701462 es_ES
dc.description.references Ciampa, F., Mankar, A., & Marini, A. (2017). Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing. Scientific Reports, 7(1). doi:10.1038/s41598-017-14594-4 es_ES
dc.description.references Miniaci, M., Gliozzi, A. S., Morvan, B., Krushynska, A., Bosia, F., Scalerandi, M., & Pugno, N. M. (2017). Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals. Physical Review Letters, 118(21). doi:10.1103/physrevlett.118.214301 es_ES
dc.description.references Tiwari, K. A., Raisutis, R., Tumsys, O., Ostreika, A., Jankauskas, K., & Jakutavicius, J. (2019). Defect Estimation in Non-Destructive Testing of Composites by Ultrasonic Guided Waves and Image Processing. Electronics, 8(3), 315. doi:10.3390/electronics8030315 es_ES
dc.description.references Le, M., Kim, J., Kim, S., & Lee, J. (2016). Nondestructive testing of pitting corrosion cracks in rivet of multilayer structures. International Journal of Precision Engineering and Manufacturing, 17(11), 1433-1442. doi:10.1007/s12541-016-0169-7 es_ES
dc.description.references Selim, H., Delgado Prieto, M., Trull, J., Romeral, L., & Cojocaru, C. (2019). Laser Ultrasound Inspection Based on Wavelet Transform and Data Clustering for Defect Estimation in Metallic Samples. Sensors, 19(3), 573. doi:10.3390/s19030573 es_ES
dc.description.references Prada, C., Kerbrat, E., Cassereau, D., & Fink, M. (2002). Time reversal techniques in ultrasonic nondestructive testing of scattering media. Inverse Problems, 18(6), 1761-1773. doi:10.1088/0266-5611/18/6/320 es_ES
dc.description.references Spies, M., Rieder, H., Dillhöfer, A., Schmitz, V., & Müller, W. (2012). Synthetic Aperture Focusing and Time-of-Flight Diffraction Ultrasonic Imaging—Past and Present. Journal of Nondestructive Evaluation, 31(4), 310-323. doi:10.1007/s10921-012-0150-z es_ES
dc.description.references Tiwari, K., Raisutis, R., & Samaitis, V. (2017). Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures. Sensors, 17(12), 2858. doi:10.3390/s17122858 es_ES
dc.description.references Boonsang, S., Zainal, J., & Dewhurst, R. J. (2004). Synthetic aperture focusing techniques in time and frequency domains for photoacoustic imaging. Insight - Non-Destructive Testing and Condition Monitoring, 46(4), 196-199. doi:10.1784/insi.46.4.196.55648 es_ES
dc.description.references Guarneri, G., Pipa, D., Junior, F., de Arruda, L., & Zibetti, M. (2015). A Sparse Reconstruction Algorithm for Ultrasonic Images in Nondestructive Testing. Sensors, 15(4), 9324-9343. doi:10.3390/s150409324 es_ES
dc.description.references Gómez, M., Castejón, C., & García-Prada, J. (2016). Review of Recent Advances in the Application of the Wavelet Transform to Diagnose Cracked Rotors. Algorithms, 9(1), 19. doi:10.3390/a9010019 es_ES
dc.description.references Selim, H., Delgado, M., Trull, J., Picó, R., & Cojocaru, C. (2018). Material Defect Reconstruction by Non-Destructive Testing with Laser Induced Ultrasonics. Journal of Physics: Conference Series, 1149, 012011. doi:10.1088/1742-6596/1149/1/012011 es_ES
dc.description.references De Marchi, L., Marzani, A., & Miniaci, M. (2013). A dispersion compensation procedure to extend pulse-echo defects location to irregular waveguides. NDT & E International, 54, 115-122. doi:10.1016/j.ndteint.2012.12.009 es_ES
dc.description.references Krohn, N., Pfleiderer, K., Stoessel, R., Solodov, I., & Busse, G. (2004). Nonlinear Acoustic Imaging: Fundamentals, Methodology, and NDE-Applications. Acoustical Imaging, 91-98. doi:10.1007/978-1-4020-2402-3_12 es_ES
dc.description.references Ulrich, T. J., Johnson, P. A., & Sutin, A. (2006). Imaging nonlinear scatterers applying the time reversal mirror. The Journal of the Acoustical Society of America, 119(3), 1514-1518. doi:10.1121/1.2168413 es_ES
dc.description.references Miniaci, M., Mazzotti, M., Radzieński, M., Kudela, P., Kherraz, N., Bosia, F., … Ostachowicz, W. (2019). Application of a Laser-Based Time Reversal Algorithm for Impact Localization in a Stiffened Aluminum Plate. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00030 es_ES
dc.description.references Kreis, T. (2016). Application of Digital Holography for Nondestructive Testing and Metrology: A Review. IEEE Transactions on Industrial Informatics, 12(1), 240-247. doi:10.1109/tii.2015.2482900 es_ES
dc.description.references Zhang, K., Zhou, Z., & Zhou, J. (2015). Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process. Applied Optics, 54(25), 7483. doi:10.1364/ao.54.007483 es_ES
dc.description.references Streza, M., Dadarlat, D., Fedala, Y., & Longuemart, S. (2013). Depth estimation of surface cracks on metallic components by means of lock-in thermography. Review of Scientific Instruments, 84(7), 074902. doi:10.1063/1.4813744 es_ES
dc.description.references Jensen, J. A., Nikolov, S. I., Gammelmark, K. L., & Pedersen, M. H. (2006). Synthetic aperture ultrasound imaging. Ultrasonics, 44, e5-e15. doi:10.1016/j.ultras.2006.07.017 es_ES
dc.description.references Ultrasonic Transducers. Vol. Pana_UT_ENhttp://www.epsilon-ndt.com/upload/file/problar-ve-aksesuarlar-.pdf es_ES
dc.description.references Cong, S., Zhang, W. W., Zhang, J. Y., & Gang, T. (2017). Analysis on Ultrasonic TOFD Imaging Testing for Ultra-thick-walled EBW Joint of Aluminum Alloy. Procedia Engineering, 207, 1910-1915. doi:10.1016/j.proeng.2017.10.960 es_ES
dc.description.references Wang, X.-G., Wu, W.-L., Huang, Z.-C., Chang, J.-J., & Wu, N.-X. (2018). Research on the Transmission Characteristics of Air-Coupled Ultrasound in Double-Layered Bonded Structures. Materials, 11(2), 310. doi:10.3390/ma11020310 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem