- -

Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window

Mostrar el registro completo del ítem

Selim, H.; Trull, J.; Delgado, M.; Picó Vila, R.; Romeral, L.; Cojocaru, C. (2019). Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window. Sensors. 19(9):1-15. https://doi.org/10.3390/s19092138

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160597

Ficheros en el ítem

Metadatos del ítem

Título: Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window
Autor: Selim, H. Trull, J. Delgado, M. Picó Vila, Rubén Romeral, Luis Cojocaru, C.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Nondestructive testing of metallic objects that may contain embedded defects of different sizes is an important application in many industrial branches for quality control. Most of these techniques allow defect detection ...[+]
Palabras clave: Laser ultrasonics , Noncontact transducers , NDT , SAFT , Apodization , 3D reconstruction
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s19092138
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s19092138
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-1-P/ES/ONDAS DE LUZ EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/
info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/
info:eu-repo/grantAgreement/RDECOM//W911NF-16-1-0563/
info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F060/
Agradecimientos:
The work was supported by Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-1 and FIS2015-65998-C2-2 and by project AICO/2016/060 by Conselleria de Educacion, ...[+]
Tipo: Artículo

References

Her, S.-C., & Lin, S.-T. (2014). Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis. Sensors, 14(9), 17146-17158. doi:10.3390/s140917146

Mi, B., Michaels, J. E., & Michaels, T. E. (2006). An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth. The Journal of the Acoustical Society of America, 119(1), 74-85. doi:10.1121/1.2139647

Cheng, Y., Deng, Y., Cao, J., Xiong, X., Bai, L., & Li, Z. (2013). Multi-Wave and Hybrid Imaging Techniques: A New Direction for Nondestructive Testing and Structural Health Monitoring. Sensors, 13(12), 16146-16190. doi:10.3390/s131216146 [+]
Her, S.-C., & Lin, S.-T. (2014). Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis. Sensors, 14(9), 17146-17158. doi:10.3390/s140917146

Mi, B., Michaels, J. E., & Michaels, T. E. (2006). An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth. The Journal of the Acoustical Society of America, 119(1), 74-85. doi:10.1121/1.2139647

Cheng, Y., Deng, Y., Cao, J., Xiong, X., Bai, L., & Li, Z. (2013). Multi-Wave and Hybrid Imaging Techniques: A New Direction for Nondestructive Testing and Structural Health Monitoring. Sensors, 13(12), 16146-16190. doi:10.3390/s131216146

Delrue, S., Van Den Abeele, K., Blomme, E., Deveugele, J., Lust, P., & Matar, O. B. (2010). Two-dimensional simulation of the single-sided air-coupled ultrasonic pitch-catch technique for non-destructive testing. Ultrasonics, 50(2), 188-196. doi:10.1016/j.ultras.2009.08.005

Delrue, S., Tabatabaeipour, M., Hettler, J., & Van Den Abeele, K. (2016). Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds. Ultrasonics, 68, 71-79. doi:10.1016/j.ultras.2016.02.012

Bai, Z., Chen, S., Xiao, Q., Jia, L., Zhao, Y., & Zeng, Z. (2017). Compressive sensing of phased array ultrasonic signal in defect detection: Simulation study and experimental verification. Structural Health Monitoring, 17(3), 434-449. doi:10.1177/1475921717701462

Ciampa, F., Mankar, A., & Marini, A. (2017). Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing. Scientific Reports, 7(1). doi:10.1038/s41598-017-14594-4

Miniaci, M., Gliozzi, A. S., Morvan, B., Krushynska, A., Bosia, F., Scalerandi, M., & Pugno, N. M. (2017). Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals. Physical Review Letters, 118(21). doi:10.1103/physrevlett.118.214301

Tiwari, K. A., Raisutis, R., Tumsys, O., Ostreika, A., Jankauskas, K., & Jakutavicius, J. (2019). Defect Estimation in Non-Destructive Testing of Composites by Ultrasonic Guided Waves and Image Processing. Electronics, 8(3), 315. doi:10.3390/electronics8030315

Le, M., Kim, J., Kim, S., & Lee, J. (2016). Nondestructive testing of pitting corrosion cracks in rivet of multilayer structures. International Journal of Precision Engineering and Manufacturing, 17(11), 1433-1442. doi:10.1007/s12541-016-0169-7

Selim, H., Delgado Prieto, M., Trull, J., Romeral, L., & Cojocaru, C. (2019). Laser Ultrasound Inspection Based on Wavelet Transform and Data Clustering for Defect Estimation in Metallic Samples. Sensors, 19(3), 573. doi:10.3390/s19030573

Prada, C., Kerbrat, E., Cassereau, D., & Fink, M. (2002). Time reversal techniques in ultrasonic nondestructive testing of scattering media. Inverse Problems, 18(6), 1761-1773. doi:10.1088/0266-5611/18/6/320

Spies, M., Rieder, H., Dillhöfer, A., Schmitz, V., & Müller, W. (2012). Synthetic Aperture Focusing and Time-of-Flight Diffraction Ultrasonic Imaging—Past and Present. Journal of Nondestructive Evaluation, 31(4), 310-323. doi:10.1007/s10921-012-0150-z

Tiwari, K., Raisutis, R., & Samaitis, V. (2017). Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures. Sensors, 17(12), 2858. doi:10.3390/s17122858

Boonsang, S., Zainal, J., & Dewhurst, R. J. (2004). Synthetic aperture focusing techniques in time and frequency domains for photoacoustic imaging. Insight - Non-Destructive Testing and Condition Monitoring, 46(4), 196-199. doi:10.1784/insi.46.4.196.55648

Guarneri, G., Pipa, D., Junior, F., de Arruda, L., & Zibetti, M. (2015). A Sparse Reconstruction Algorithm for Ultrasonic Images in Nondestructive Testing. Sensors, 15(4), 9324-9343. doi:10.3390/s150409324

Gómez, M., Castejón, C., & García-Prada, J. (2016). Review of Recent Advances in the Application of the Wavelet Transform to Diagnose Cracked Rotors. Algorithms, 9(1), 19. doi:10.3390/a9010019

Selim, H., Delgado, M., Trull, J., Picó, R., & Cojocaru, C. (2018). Material Defect Reconstruction by Non-Destructive Testing with Laser Induced Ultrasonics. Journal of Physics: Conference Series, 1149, 012011. doi:10.1088/1742-6596/1149/1/012011

De Marchi, L., Marzani, A., & Miniaci, M. (2013). A dispersion compensation procedure to extend pulse-echo defects location to irregular waveguides. NDT & E International, 54, 115-122. doi:10.1016/j.ndteint.2012.12.009

Krohn, N., Pfleiderer, K., Stoessel, R., Solodov, I., & Busse, G. (2004). Nonlinear Acoustic Imaging: Fundamentals, Methodology, and NDE-Applications. Acoustical Imaging, 91-98. doi:10.1007/978-1-4020-2402-3_12

Ulrich, T. J., Johnson, P. A., & Sutin, A. (2006). Imaging nonlinear scatterers applying the time reversal mirror. The Journal of the Acoustical Society of America, 119(3), 1514-1518. doi:10.1121/1.2168413

Miniaci, M., Mazzotti, M., Radzieński, M., Kudela, P., Kherraz, N., Bosia, F., … Ostachowicz, W. (2019). Application of a Laser-Based Time Reversal Algorithm for Impact Localization in a Stiffened Aluminum Plate. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00030

Kreis, T. (2016). Application of Digital Holography for Nondestructive Testing and Metrology: A Review. IEEE Transactions on Industrial Informatics, 12(1), 240-247. doi:10.1109/tii.2015.2482900

Zhang, K., Zhou, Z., & Zhou, J. (2015). Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process. Applied Optics, 54(25), 7483. doi:10.1364/ao.54.007483

Streza, M., Dadarlat, D., Fedala, Y., & Longuemart, S. (2013). Depth estimation of surface cracks on metallic components by means of lock-in thermography. Review of Scientific Instruments, 84(7), 074902. doi:10.1063/1.4813744

Jensen, J. A., Nikolov, S. I., Gammelmark, K. L., & Pedersen, M. H. (2006). Synthetic aperture ultrasound imaging. Ultrasonics, 44, e5-e15. doi:10.1016/j.ultras.2006.07.017

Ultrasonic Transducers. Vol. Pana_UT_ENhttp://www.epsilon-ndt.com/upload/file/problar-ve-aksesuarlar-.pdf

Cong, S., Zhang, W. W., Zhang, J. Y., & Gang, T. (2017). Analysis on Ultrasonic TOFD Imaging Testing for Ultra-thick-walled EBW Joint of Aluminum Alloy. Procedia Engineering, 207, 1910-1915. doi:10.1016/j.proeng.2017.10.960

Wang, X.-G., Wu, W.-L., Huang, Z.-C., Chang, J.-J., & Wu, N.-X. (2018). Research on the Transmission Characteristics of Air-Coupled Ultrasound in Double-Layered Bonded Structures. Materials, 11(2), 310. doi:10.3390/ma11020310

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem