- -

ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA

Mostrar el registro completo del ítem

Belda Palazón, B.; Julian, J.; Coego, A.; Wu, Q.; Zhang, X.; Batistic, O.; Alquraishi, SA.... (2019). ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA. The Plant Journal. 98(5):813-825. https://doi.org/10.1111/tpj.14274

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160599

Ficheros en el ítem

Metadatos del ítem

Título: ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA
Autor: Belda Palazón, Borja Julian, Jose Coego, Alberto Wu, Qian Zhang, Xu Batistic, Oliver Alquraishi, Saleh A. Kudla, Joerg An, Chengcai Rodríguez Egea, Pedro Luís
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Hormone- and stress-induced shuttling of signaling or regulatory proteins is an important cellular mechanism to modulate hormone signaling and cope with abiotic stress. Hormone-induced ubiquitination plays a crucial ...[+]
Palabras clave: ABA signaling , RGLG1 , E3 ligase , PP2C , Ubiquitination , Myristoylation , Shuttling , Arabidopsis thaliana
Derechos de uso: Reserva de todos los derechos
Fuente:
The Plant Journal. (issn: 0960-7412 )
DOI: 10.1111/tpj.14274
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/tpj.14274
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIO2014-52537-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA MEDIANTE MECHANISMOS QUE AFECTAN LOCALIZACION SUBCELULAR, VIDA MEDIA Y ACTIVIDAD DE RECEPTORES PARA REFORZAR TOLERANCIA VEGETAL A SEQUIA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82503-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA Y TOLERANCIA A SEQUIA MEDIANTE E3 UBIQUITIN LIGASAS QUE REGULAN EL RECAMBIO DE RECEPTORES Y FOSFATASAS 2C/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F039/
info:eu-repo/grantAgreement/DFG//Ku931%2F4-1/
info:eu-repo/grantAgreement/DFG//BA4742%2F1-2/
Agradecimientos:
Work in P.L.R.'s laboratory was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional and Consejo Superior de Investigaciones Cientificas through grants BIO2014-52537-R and BIO2017-82503-R. ...[+]
Tipo: Artículo

References

Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Rodrigues, A., Pizzio, G. A., & Rodriguez, P. L. (2011). Selective Inhibition of Clade A Phosphatases Type 2C by PYR/PYL/RCAR Abscisic Acid Receptors    . Plant Physiology, 158(2), 970-980. doi:10.1104/pp.111.188623

Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., … Rodriguez, P. L. (2012). PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root      . Plant Physiology, 161(2), 931-941. doi:10.1104/pp.112.208678

Belda-Palazon, B., Gonzalez-Garcia, M.-P., Lozano-Juste, J., Coego, A., Antoni, R., Julian, J., … Rodriguez, P. L. (2018). PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization–based mechanisms. Proceedings of the National Academy of Sciences, 115(50), E11857-E11863. doi:10.1073/pnas.1815410115 [+]
Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Rodrigues, A., Pizzio, G. A., & Rodriguez, P. L. (2011). Selective Inhibition of Clade A Phosphatases Type 2C by PYR/PYL/RCAR Abscisic Acid Receptors    . Plant Physiology, 158(2), 970-980. doi:10.1104/pp.111.188623

Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., … Rodriguez, P. L. (2012). PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root      . Plant Physiology, 161(2), 931-941. doi:10.1104/pp.112.208678

Belda-Palazon, B., Gonzalez-Garcia, M.-P., Lozano-Juste, J., Coego, A., Antoni, R., Julian, J., … Rodriguez, P. L. (2018). PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization–based mechanisms. Proceedings of the National Academy of Sciences, 115(50), E11857-E11863. doi:10.1073/pnas.1815410115

Bhaskara, G. B., Nguyen, T. T., & Verslues, P. E. (2012). Unique Drought Resistance Functions of the Highly ABA-Induced Clade A Protein Phosphatase 2Cs    . Plant Physiology, 160(1), 379-395. doi:10.1104/pp.112.202408

Bigeard, J., & Hirt, H. (2018). Nuclear Signaling of Plant MAPKs. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00469

Boisson, B., Giglione, C., & Meinnel, T. (2003). Unexpected Protein Families Including Cell Defense Components Feature in the N-Myristoylome of a Higher Eukaryote. Journal of Biological Chemistry, 278(44), 43418-43429. doi:10.1074/jbc.m307321200

Burnaevskiy, N., Fox, T. G., Plymire, D. A., Ertelt, J. M., Weigele, B. A., Selyunin, A. S., … Alto, N. M. (2013). Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ. Nature, 496(7443), 106-109. doi:10.1038/nature12004

Burnaevskiy, N., Peng, T., Reddick, L. E., Hang, H. C., & Alto, N. M. (2015). Myristoylome Profiling Reveals a Concerted Mechanism of ARF GTPase Deacylation by the Bacterial Protease IpaJ. Molecular Cell, 58(1), 110-122. doi:10.1016/j.molcel.2015.01.040

Chaumet, A., Wright, G. D., Seet, S. H., Tham, K. M., Gounko, N. V., & Bard, F. (2015). Nuclear envelope-associated endosomes deliver surface proteins to the nucleus. Nature Communications, 6(1). doi:10.1038/ncomms9218

Cheng, M.-C., Hsieh, E.-J., Chen, J.-H., Chen, H.-Y., & Lin, T.-P. (2011). Arabidopsis RGLG2, Functioning as a RING E3 Ligase, Interacts with AtERF53 and Negatively Regulates the Plant Drought Stress Response    . Plant Physiology, 158(1), 363-375. doi:10.1104/pp.111.189738

Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x

Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979

Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122

Edel, K. H., & Kudla, J. (2016). Integration of calcium and ABA signaling. Current Opinion in Plant Biology, 33, 83-91. doi:10.1016/j.pbi.2016.06.010

French, A. P., Mills, S., Swarup, R., Bennett, M. J., & Pridmore, T. P. (2008). Colocalization of fluorescent markers in confocal microscope images of plant cells. Nature Protocols, 3(4), 619-628. doi:10.1038/nprot.2008.31

Gehl, C., Waadt, R., Kudla, J., Mendel, R.-R., & Hänsch, R. (2009). New GATEWAY vectors for High Throughput Analyses of Protein–Protein Interactions by Bimolecular Fluorescence Complementation. Molecular Plant, 2(5), 1051-1058. doi:10.1093/mp/ssp040

Herranz, M. C., Pallas, V., & Aparicio, F. (2012). Multifunctional Roles for the N-Terminal Basic Motif of Alfalfa mosaic virus Coat Protein: Nucleolar/Cytoplasmic Shuttling, Modulation of RNA-Binding Activity, and Virion Formation. Molecular Plant-Microbe Interactions®, 25(8), 1093-1103. doi:10.1094/mpmi-04-12-0079-r

Hornáček, M., Kováčik, L., Mazel, T., Cmarko, D., Bártová, E., Raška, I., & Smirnov, E. (2017). Fluctuations of pol I and fibrillarin contents of the nucleoli. Nucleus, 8(4), 421-432. doi:10.1080/19491034.2017.1306160

Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., … Rubio, V. (2014). Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis. The Plant Cell, 26(2), 712-728. doi:10.1105/tpc.113.122234

Kong, L., Cheng, J., Zhu, Y., Ding, Y., Meng, J., Chen, Z., … Gong, Z. (2015). Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nature Communications, 6(1). doi:10.1038/ncomms9630

Kuhn, J. M., Boisson-Dernier, A., Dizon, M. B., Maktabi, M. H., & Schroeder, J. I. (2005). The Protein Phosphatase AtPP2CA Negatively Regulates Abscisic Acid Signal Transduction in Arabidopsis, and Effects of abh1 on AtPP2CA mRNA  . Plant Physiology, 140(1), 127-139. doi:10.1104/pp.105.070318

Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. doi:10.1073/pnas.0910601106

Lee, H.-J., Park, Y.-J., Seo, P. J., Kim, J.-H., Sim, H.-J., Kim, S.-G., & Park, C.-M. (2015). Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. The Plant Cell, 27(12), 3425-3438. doi:10.1105/tpc.15.00371

Leitner, J., Petrasek, J., Tomanov, K., Retzer, K., Parezova, M., Korbei, B., … Luschnig, C. (2012). Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proceedings of the National Academy of Sciences, 109(21), 8322-8327. doi:10.1073/pnas.1200824109

Li, W., & Schmidt, W. (2010). A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots. The Plant Journal, 62(2), 330-343. doi:10.1111/j.1365-313x.2010.04150.x

Lumba, S., Cutler, S., & McCourt, P. (2010). Plant Nuclear Hormone Receptors: A Role for Small Molecules in Protein-Protein Interactions. Annual Review of Cell and Developmental Biology, 26(1), 445-469. doi:10.1146/annurev-cellbio-100109-103956

Lynch, T., Erickson, B. J., & Finkelstein, R. R. (2012). Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Molecular Biology, 80(6), 647-658. doi:10.1007/s11103-012-9973-3

Majeran, W., Le Caer, J.-P., Ponnala, L., Meinnel, T., & Giglione, C. (2018). Targeted Profiling of Arabidopsis thaliana Subproteomes Illuminates Co- and Posttranslationally N-Terminal Myristoylated Proteins. The Plant Cell, 30(3), 543-562. doi:10.1105/tpc.17.00523

Moes, D., Himmelbach, A., Korte, A., Haberer, G., & Grill, E. (2008). Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. The Plant Journal, 54(5), 806-819. doi:10.1111/j.1365-313x.2008.03454.x

Moreno-Alvero, M., Yunta, C., Gonzalez-Guzman, M., Lozano-Juste, J., Benavente, J. L., Arbona, V., … Albert, A. (2017). Structure of Ligand-Bound Intermediates of Crop ABA Receptors Highlights PP2C as Necessary ABA Co-receptor. Molecular Plant, 10(9), 1250-1253. doi:10.1016/j.molp.2017.07.004

NAKAGAWA, T., SUZUKI, T., MURATA, S., NAKAMURA, S., HINO, T., MAEO, K., … ISHIGURO, S. (2007). Improved Gateway Binary Vectors: High-Performance Vectors for Creation of Fusion Constructs in Transgenic Analysis of Plants. Bioscience, Biotechnology, and Biochemistry, 71(8), 2095-2100. doi:10.1271/bbb.70216

Peirats-Llobet, M., Han, S.-K., Gonzalez-Guzman, M., Jeong, C. W., Rodriguez, L., Belda-Palazon, B., … Rodriguez, P. L. (2016). A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. Molecular Plant, 9(1), 136-147. doi:10.1016/j.molp.2015.10.003

Pierre, M., Traverso, J. A., Boisson, B., Domenichini, S., Bouchez, D., Giglione, C., & Meinnel, T. (2007). N-Myristoylation Regulates the SnRK1 Pathway inArabidopsis. The Plant Cell, 19(9), 2804-2821. doi:10.1105/tpc.107.051870

Pizzio, G. A., Rodriguez, L., Antoni, R., Gonzalez-Guzman, M., Yunta, C., Merilo, E., … Rodriguez, P. L. (2013). The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance      . Plant Physiology, 163(1), 441-455. doi:10.1104/pp.113.224162

Rodriguez, L., Gonzalez-Guzman, M., Diaz, M., Rodrigues, A., Izquierdo-Garcia, A. C., Peirats-Llobet, M., … Rodriguez, P. L. (2014). C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in Arabidopsis. The Plant Cell, 26(12), 4802-4820. doi:10.1105/tpc.114.129973

Romero-Barrios, N., & Vert, G. (2017). Proteasome-independent functions of lysine-63 polyubiquitination in plants. New Phytologist, 217(3), 995-1011. doi:10.1111/nph.14915

Rubio, S., Rodrigues, A., Saez, A., Dizon, M. B., Galle, A., Kim, T.-H., … Rodriguez, P. L. (2009). Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid      . Plant Physiology, 150(3), 1345-1355. doi:10.1104/pp.109.137174

Saez, A., Rodrigues, A., Santiago, J., Rubio, S., & Rodriguez, P. L. (2008). HAB1–SWI3B Interaction Reveals a Link between Abscisic Acid Signaling and Putative SWI/SNF Chromatin-Remodeling Complexes in Arabidopsis. The Plant Cell, 20(11), 2972-2988. doi:10.1105/tpc.107.056705

Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x

Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.-Y., Jamin, M., … Márquez, J. A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 462(7273), 665-668. doi:10.1038/nature08591

Schapire, A. L., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., … Botella, M. A. (2008). Arabidopsis Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability. The Plant Cell, 20(12), 3374-3388. doi:10.1105/tpc.108.063859

Sheen, J. (1998). Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proceedings of the National Academy of Sciences, 95(3), 975-980. doi:10.1073/pnas.95.3.975

Tischer, S. V., Wunschel, C., Papacek, M., Kleigrewe, K., Hofmann, T., Christmann, A., & Grill, E. (2017). Combinatorial interaction network of abscisic acid receptors and coreceptors fromArabidopsis thaliana. Proceedings of the National Academy of Sciences, 114(38), 10280-10285. doi:10.1073/pnas.1706593114

Turnbull, D., & Hemsley, P. A. (2017). Fats and function: protein lipid modifications in plant cell signalling. Current Opinion in Plant Biology, 40, 63-70. doi:10.1016/j.pbi.2017.07.007

Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106

Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., … Merlot, S. (2009). Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid inArabidopsis . The Plant Cell, 21(10), 3170-3184. doi:10.1105/tpc.109.069179

Wu, C., Feng, J., Wang, R., Liu, H., Yang, H., Rodriguez, P. L., … Wang, D. (2012). HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds. PLoS ONE, 7(4), e35764. doi:10.1371/journal.pone.0035764

Wu, Q., Zhang, X., Peirats-Llobet, M., Belda-Palazon, B., Wang, X., Cui, S., … An, C. (2016). Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA. The Plant Cell, 28(9), 2178-2196. doi:10.1105/tpc.16.00364

Yin, X.-J., Volk, S., Ljung, K., Mehlmer, N., Dolezal, K., Ditengou, F., … Bachmair, A. (2007). Ubiquitin Lysine 63 Chain–Forming Ligases Regulate Apical Dominance in Arabidopsis. The Plant Cell, 19(6), 1898-1911. doi:10.1105/tpc.107.052035

Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., … Hirayama, T. (2005). ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs. Plant Physiology, 140(1), 115-126. doi:10.1104/pp.105.070128

Zhang, X., Wu, Q., Ren, J., Qian, W., He, S., Huang, K., … An, C. (2012). Two Novel RING-Type Ubiquitin Ligases, RGLG3 and RGLG4, Are Essential for Jasmonate-Mediated Responses in Arabidopsis      . Plant Physiology, 160(2), 808-822. doi:10.1104/pp.112.203422

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem