- -

Reduced Cycle Spinning Method for the Undecimated Wavelet Transform

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reduced Cycle Spinning Method for the Undecimated Wavelet Transform

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez-Hernández, Miguel A. es_ES
dc.date.accessioned 2021-02-03T04:33:59Z
dc.date.available 2021-02-03T04:33:59Z
dc.date.issued 2019-06-20 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160606
dc.description.abstract [EN] The Undecimated Wavelet Transform is commonly used for signal processing due to its advantages over other wavelet techniques, but it is limited for some applications because of its computational cost. One of the methods utilized for the implementation of the Undecimated Wavelet Transform is the one known as Cycle Spinning. This paper introduces an alternative Cycle Spinning implementation method that divides the computational cost by a factor close to 2. This work develops the mathematical background of the proposed method, shows the block diagrams for its implementation and validates the method by applying it to the denoising of ultrasonic signals. The evaluation of the denoising results shows that the new method produces similar denoising qualities than other Cycle Spinning implementations, with a reduced computational cost. es_ES
dc.description.sponsorship This research was funded by grants number PGC2018-09415-B-I00 (MCIU/AEI/FEDER, UE) and TEC2015-71932-REDT. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cycle spinning es_ES
dc.subject Undecimated wavelet transform es_ES
dc.subject Computational cost es_ES
dc.subject Denoising es_ES
dc.subject Ultrasonic es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Reduced Cycle Spinning Method for the Undecimated Wavelet Transform es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19122777 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-71932-REDT/ES/ELASTIC NETWORKS: NUEVOS PARADIGMAS DE REDES ELASTICAS PARA UN MUNDO RADICALMENTE BASADO EN CLOUD Y FOG COMPUTING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094151-B-I00/ES/SLICING DINAMICO EN REDES DE ACCESO RADIO 5G/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-47272-C2-1-R/ES/PLATAFORMA DE SERVICIOS PARA CIUDADES INTELIGENTES CON REDES M2M DENSAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Rodríguez-Hernández, MA. (2019). Reduced Cycle Spinning Method for the Undecimated Wavelet Transform. Sensors. 19(12):1-16. https://doi.org/10.3390/s19122777 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19122777 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31226853 es_ES
dc.identifier.pmcid PMC6630254 es_ES
dc.relation.pasarela S\390389 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Signal Processing Fourier and Wavelet Representationshttp://www.fourierandwavelets.org/SPFWR_a3.1_2012.pdf es_ES
dc.description.references Zhao, H., Zuo, S., Hou, M., Liu, W., Yu, L., Yang, X., & Deng, W. (2018). A Novel Adaptive Signal Processing Method Based on Enhanced Empirical Wavelet Transform Technology. Sensors, 18(10), 3323. doi:10.3390/s18103323 es_ES
dc.description.references Gradolewski, D., Magenes, G., Johansson, S., & Kulesza, W. (2019). A Wavelet Transform-Based Neural Network Denoising Algorithm for Mobile Phonocardiography. Sensors, 19(4), 957. doi:10.3390/s19040957 es_ES
dc.description.references Shikhsarmast, F., Lyu, T., Liang, X., Zhang, H., & Gulliver, T. (2018). Random-Noise Denoising and Clutter Elimination of Human Respiration Movements Based on an Improved Time Window Selection Algorithm Using Wavelet Transform. Sensors, 19(1), 95. doi:10.3390/s19010095 es_ES
dc.description.references Shensa, M. J. (1992). The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Transactions on Signal Processing, 40(10), 2464-2482. doi:10.1109/78.157290 es_ES
dc.description.references Li, M., & Ghosal, S. (2015). Fast Translation Invariant Multiscale Image Denoising. IEEE Transactions on Image Processing, 24(12), 4876-4887. doi:10.1109/tip.2015.2470601 es_ES
dc.description.references Hazarika, D., Nath, V. K., & Bhuyan, M. (2016). SAR Image Despeckling Based on a Mixture of Gaussian Distributions with Local Parameters and Multiscale Edge Detection in Lapped Transform Domain. Sensing and Imaging, 17(1). doi:10.1007/s11220-016-0141-8 es_ES
dc.description.references Sakhaee, E., & Entezari, A. (2017). Joint Inverse Problems for Signal Reconstruction via Dictionary Splitting. IEEE Signal Processing Letters, 24(8), 1203-1207. doi:10.1109/lsp.2017.2701815 es_ES
dc.description.references Ong, F., Uecker, M., Tariq, U., Hsiao, A., Alley, M. T., Vasanawala, S. S., & Lustig, M. (2014). Robust 4D flow denoising using divergence-free wavelet transform. Magnetic Resonance in Medicine, 73(2), 828-842. doi:10.1002/mrm.25176 es_ES
dc.description.references Rehman, N. ur, Abbas, S. Z., Asif, A., Javed, A., Naveed, K., & Mandic, D. P. (2017). Translation invariant multi-scale signal denoising based on goodness-of-fit tests. Signal Processing, 131, 220-234. doi:10.1016/j.sigpro.2016.08.019 es_ES
dc.description.references Mota, H. de O., Vasconcelos, F. H., & de Castro, C. L. (2016). A comparison of cycle spinning versus stationary wavelet transform for the extraction of features of partial discharge signals. IEEE Transactions on Dielectrics and Electrical Insulation, 23(2), 1106-1118. doi:10.1109/tdei.2015.005300 es_ES
dc.description.references Li, D., Wang, Y., Lin, J., Yu, S., & Ji, Y. (2016). Electromagnetic noise reduction in grounded electrical‐source airborne transient electromagnetic signal using a stationarywavelet‐based denoising algorithm. Near Surface Geophysics, 15(2), 163-173. doi:10.3997/1873-0604.2017003 es_ES
dc.description.references San Emeterio, J. L., & Rodriguez-Hernandez, M. A. (2014). Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts. Journal of Nondestructive Evaluation, 34(1). doi:10.1007/s10921-014-0270-8 es_ES
dc.description.references Rodriguez-Hernandez, M. A., & Emeterio, J. L. S. (2015). Noise reduction using wavelet cycle spinning: analysis of useful periodicities in the z-transform domain. Signal, Image and Video Processing, 10(3), 519-526. doi:10.1007/s11760-015-0762-8 es_ES
dc.description.references Rodriguez-Hernandez, M. A. (2016). Shift selection influence in partial cycle spinning denoising of biomedical signals. Biomedical Signal Processing and Control, 26, 64-68. doi:10.1016/j.bspc.2015.12.002 es_ES
dc.description.references Beylkin, G., Coifman, R., & Rokhlin, V. (1991). Fast wavelet transforms and numerical algorithms I. Communications on Pure and Applied Mathematics, 44(2), 141-183. doi:10.1002/cpa.3160440202 es_ES
dc.description.references Beylkin, G. (1992). On the Representation of Operators in Bases of Compactly Supported Wavelets. SIAM Journal on Numerical Analysis, 29(6), 1716-1740. doi:10.1137/0729097 es_ES
dc.description.references Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3), 425-455. doi:10.1093/biomet/81.3.425 es_ES
dc.description.references Donoho, D. L., & Johnstone, I. M. (1995). Adapting to Unknown Smoothness via Wavelet Shrinkage. Journal of the American Statistical Association, 90(432), 1200-1224. doi:10.1080/01621459.1995.10476626 es_ES
dc.description.references Johnstone, I. M., & Silverman, B. W. (1997). Wavelet Threshold Estimators for Data with Correlated Noise. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(2), 319-351. doi:10.1111/1467-9868.00071 es_ES
dc.description.references Pardo, E., San Emeterio, J. L., Rodriguez, M. A., & Ramos, A. (2006). Noise reduction in ultrasonic NDT using undecimated wavelet transforms. Ultrasonics, 44, e1063-e1067. doi:10.1016/j.ultras.2006.05.101 es_ES
dc.description.references Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3), 613-627. doi:10.1109/18.382009 es_ES
dc.description.references Lázaro, J. C., San Emeterio, J. L., Ramos, A., & Fernández-Marrón, J. L. (2002). Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets. Ultrasonics, 40(1-8), 263-267. doi:10.1016/s0041-624x(02)00149-x es_ES
dc.description.references Karpur, P., Shankar, P. M., Rose, J. L., & Newhouse, V. L. (1987). Split spectrum processing: optimizing the processing parameters using minimization. Ultrasonics, 25(4), 204-208. doi:10.1016/0041-624x(87)90034-5 es_ES
dc.description.references Pardo, E., Emeterio, S. J. L., Rodriguez, M. A., & Ramos, A. (2008). Shift Invariant Wavelet Denoising of Ultrasonic Traces. Acta Acustica united with Acustica, 94(5), 685-693. doi:10.3813/aaa.918082 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem