Signal Processing Fourier and Wavelet Representationshttp://www.fourierandwavelets.org/SPFWR_a3.1_2012.pdf
Zhao, H., Zuo, S., Hou, M., Liu, W., Yu, L., Yang, X., & Deng, W. (2018). A Novel Adaptive Signal Processing Method Based on Enhanced Empirical Wavelet Transform Technology. Sensors, 18(10), 3323. doi:10.3390/s18103323
Gradolewski, D., Magenes, G., Johansson, S., & Kulesza, W. (2019). A Wavelet Transform-Based Neural Network Denoising Algorithm for Mobile Phonocardiography. Sensors, 19(4), 957. doi:10.3390/s19040957
[+]
Signal Processing Fourier and Wavelet Representationshttp://www.fourierandwavelets.org/SPFWR_a3.1_2012.pdf
Zhao, H., Zuo, S., Hou, M., Liu, W., Yu, L., Yang, X., & Deng, W. (2018). A Novel Adaptive Signal Processing Method Based on Enhanced Empirical Wavelet Transform Technology. Sensors, 18(10), 3323. doi:10.3390/s18103323
Gradolewski, D., Magenes, G., Johansson, S., & Kulesza, W. (2019). A Wavelet Transform-Based Neural Network Denoising Algorithm for Mobile Phonocardiography. Sensors, 19(4), 957. doi:10.3390/s19040957
Shikhsarmast, F., Lyu, T., Liang, X., Zhang, H., & Gulliver, T. (2018). Random-Noise Denoising and Clutter Elimination of Human Respiration Movements Based on an Improved Time Window Selection Algorithm Using Wavelet Transform. Sensors, 19(1), 95. doi:10.3390/s19010095
Shensa, M. J. (1992). The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Transactions on Signal Processing, 40(10), 2464-2482. doi:10.1109/78.157290
Li, M., & Ghosal, S. (2015). Fast Translation Invariant Multiscale Image Denoising. IEEE Transactions on Image Processing, 24(12), 4876-4887. doi:10.1109/tip.2015.2470601
Hazarika, D., Nath, V. K., & Bhuyan, M. (2016). SAR Image Despeckling Based on a Mixture of Gaussian Distributions with Local Parameters and Multiscale Edge Detection in Lapped Transform Domain. Sensing and Imaging, 17(1). doi:10.1007/s11220-016-0141-8
Sakhaee, E., & Entezari, A. (2017). Joint Inverse Problems for Signal Reconstruction via Dictionary Splitting. IEEE Signal Processing Letters, 24(8), 1203-1207. doi:10.1109/lsp.2017.2701815
Ong, F., Uecker, M., Tariq, U., Hsiao, A., Alley, M. T., Vasanawala, S. S., & Lustig, M. (2014). Robust 4D flow denoising using divergence-free wavelet transform. Magnetic Resonance in Medicine, 73(2), 828-842. doi:10.1002/mrm.25176
Rehman, N. ur, Abbas, S. Z., Asif, A., Javed, A., Naveed, K., & Mandic, D. P. (2017). Translation invariant multi-scale signal denoising based on goodness-of-fit tests. Signal Processing, 131, 220-234. doi:10.1016/j.sigpro.2016.08.019
Mota, H. de O., Vasconcelos, F. H., & de Castro, C. L. (2016). A comparison of cycle spinning versus stationary wavelet transform for the extraction of features of partial discharge signals. IEEE Transactions on Dielectrics and Electrical Insulation, 23(2), 1106-1118. doi:10.1109/tdei.2015.005300
Li, D., Wang, Y., Lin, J., Yu, S., & Ji, Y. (2016). Electromagnetic noise reduction in grounded electrical‐source airborne transient electromagnetic signal using a stationarywavelet‐based denoising algorithm. Near Surface Geophysics, 15(2), 163-173. doi:10.3997/1873-0604.2017003
San Emeterio, J. L., & Rodriguez-Hernandez, M. A. (2014). Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts. Journal of Nondestructive Evaluation, 34(1). doi:10.1007/s10921-014-0270-8
Rodriguez-Hernandez, M. A., & Emeterio, J. L. S. (2015). Noise reduction using wavelet cycle spinning: analysis of useful periodicities in the z-transform domain. Signal, Image and Video Processing, 10(3), 519-526. doi:10.1007/s11760-015-0762-8
Rodriguez-Hernandez, M. A. (2016). Shift selection influence in partial cycle spinning denoising of biomedical signals. Biomedical Signal Processing and Control, 26, 64-68. doi:10.1016/j.bspc.2015.12.002
Beylkin, G., Coifman, R., & Rokhlin, V. (1991). Fast wavelet transforms and numerical algorithms I. Communications on Pure and Applied Mathematics, 44(2), 141-183. doi:10.1002/cpa.3160440202
Beylkin, G. (1992). On the Representation of Operators in Bases of Compactly Supported Wavelets. SIAM Journal on Numerical Analysis, 29(6), 1716-1740. doi:10.1137/0729097
Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3), 425-455. doi:10.1093/biomet/81.3.425
Donoho, D. L., & Johnstone, I. M. (1995). Adapting to Unknown Smoothness via Wavelet Shrinkage. Journal of the American Statistical Association, 90(432), 1200-1224. doi:10.1080/01621459.1995.10476626
Johnstone, I. M., & Silverman, B. W. (1997). Wavelet Threshold Estimators for Data with Correlated Noise. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(2), 319-351. doi:10.1111/1467-9868.00071
Pardo, E., San Emeterio, J. L., Rodriguez, M. A., & Ramos, A. (2006). Noise reduction in ultrasonic NDT using undecimated wavelet transforms. Ultrasonics, 44, e1063-e1067. doi:10.1016/j.ultras.2006.05.101
Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3), 613-627. doi:10.1109/18.382009
Lázaro, J. C., San Emeterio, J. L., Ramos, A., & Fernández-Marrón, J. L. (2002). Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets. Ultrasonics, 40(1-8), 263-267. doi:10.1016/s0041-624x(02)00149-x
Karpur, P., Shankar, P. M., Rose, J. L., & Newhouse, V. L. (1987). Split spectrum processing: optimizing the processing parameters using minimization. Ultrasonics, 25(4), 204-208. doi:10.1016/0041-624x(87)90034-5
Pardo, E., Emeterio, S. J. L., Rodriguez, M. A., & Ramos, A. (2008). Shift Invariant Wavelet Denoising of Ultrasonic Traces. Acta Acustica united with Acustica, 94(5), 685-693. doi:10.3813/aaa.918082
[-]